YBX1/YB-1 induces partial EMT and tumourigenicity through secretion of angiogenic factors into the extracellular microenvironment
نویسندگان
چکیده
Epithelial-mesenchymal transition (EMT) describes a morphogenetic program which confers mesenchymal cell properties, such as reduced cell-cell contact and increased cell migration and invasion, to epithelial cells. Here we investigate the role of the pleiotropic transcription/splicing factor and RNA-binding protein nuclease-sensitive element-binding protein 1 (YBX1/YB-1) in increasing the oncogenic potential of epithelial MDCK cells. Characterization of MDCK cells expressing YBX1 (MDCKYBX1 cells) revealed a partial EMT phenotype, including cytosolic relocalization of E-cadherin, increased cell scattering, and anchorage-independent growth. Subcutaneous injection of parental MDCK cells into NOD/SCID mice did not form tumours. Critically, MDCKYBX1 cells established viable tumour xenografts, and immuno-histochemical staining indicated murine vascularization by CD31+ endothelial cells. We analysed the total secretome (containing soluble and extracellular vesicles) of MDCKYBX1 cells to investigate regulation of the tumour microenvironment. YBX1 expression elevated release of secreted factors known to enhance angiogenesis (TGF-β, CSF-1, NGF, VGF, ADAM9 and ADAM17), compared to MDCK cells. Importantly, treatment with MDCKYBX1 cell-derived secretome increased recipient 2F-2B endothelial cell motility. This defines YBX1 as an oncogenic enhancer that can regulate tumour angiogenesis via release of secreted modulators into the extracellular microenvironment.
منابع مشابه
Interplay between YB-1 and IL-6 promotes the metastatic phenotype in breast cancer cells
Epithelial to mesenchymal transition (EMT) induces cell plasticity and promotes metastasis. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) and the pleiotropic cytokine interleukin 6 (IL-6) have both been implicated in tumor cell metastasis and EMT, but via distinct pathways. Here, we show that direct interplay between YB-1 and IL-6 regulates breast cancer metastasis. Overexpress...
متن کاملChanging Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis
Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...
متن کاملOncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells
The metastatic cascade describes the escape of primary tumour cells to distant secondary sites. Cells at the leading tumour edge are thought to undergo epithelial-mesenchymal transition (EMT), to enhance their motility and invasion for spreading. Whether EMT cells directly promote tumour angiogenesis, and the role of exosomes (30-150 nm extracellular vesicles) remains largely unknown. We examin...
متن کاملWISP-1, a novel angiogenic regulator of the CCN family, promotes oral squamous cell carcinoma angiogenesis through VEGF-A expression
Oral squamous cell carcinoma (OSCC), which accounts for nearly 90% of head and neck cancers, is characterized by poor prognosis and a low survival rate. VEGF-A is the most established angiogenic factor involved in the angiogenic-regulated tumor progression. WISP-1/CCN4 is an extracellular matrix-related protein that belongs to the Cyr61, CTGF, Nov (CCN) family and regulates many biological func...
متن کاملTwist1 induces CCL2 and recruits macrophages to promote angiogenesis.
The transcription factor Twist1 induces epithelial-mesenchymal transition and extracellular matrix degradation to promote tumor metastasis. Although Twist1 also plays a role in embryonic vascular development and tumor angiogenesis, the molecular mechanisms that underlie these processes are not as well understood. Here, we report a novel function for Twist1 in modifying the tumor microenvironmen...
متن کامل