Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

نویسندگان

  • David N Adamson
  • Debarshi Mustafi
  • John X J Zhang
  • Bo Zheng
  • Rustem F Ismagilov
چکیده

This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow.

Plugging a gap in screening—Arrays of nanoliter-sized plugs of different compositions can be preformed in a three-phase liquid/liquid/gas flow. The arrays can be transported into a microfluidic channel to test against a target (see schematic representation), as demonstrated in protein crystallization and an enzymatic assay.

متن کامل

Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.

Protein crystallization is important for determining protein structures by X-ray diffraction. Nanoliter-sized plugs--aqueous droplets surrounded by a fluorinated carrier fluid--have been applied to the screening of protein crystallization conditions. Preformed arrays of plugs in capillary cartridges enable sparse matrix screening. Crystals grown in plugs inside a microcapillary may be analyzed ...

متن کامل

Processing of nanolitre liquid plugs for microfluidic cell-based assays.

Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of diffe...

متن کامل

An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries.

Droplet-based microfluidic systems allow biological and chemical reactions to be performed on a drastically decreased scale. However, interfacing the outside world with such systems and generating high numbers of microdroplets of distinct chemical composition remain challenging. We describe here an automated system in which arrays of chemically distinct plugs are generated from microtiter plate...

متن کامل

Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs.

We studied the self-assembly of inorganic nanocrystals (NCs) confined inside nanoliter droplets (plugs) into long-range ordered superlattices. We showed that a capillary microfluidic platform can be used for the optimization of growth conditions for NC superlattices and can provide insights into the kinetics of the NC assembly process. The utility of our approach was demonstrated by growing lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2006