Elliptic Gromov-Witten invariants and the generalized mirror conjecture

نویسنده

  • Alexander Givental
چکیده

A conjecture expressing genus 1 Gromov-Witten invariants in mirror-theoretic terms of semi-simple Frobenius structures and complex oscillating integrals is formulated. The proof of the conjecture is given for torus-equivariant Gromov Witten invariants of compact Kähler manifolds with isolated fixed points and for concave bundle spaces over such manifolds. Several results on genus 0 Gromov Witten theory include: a non-linear Serre duality theorem, its application to the genus 0 mirror conjecture, a mirror theorem for concave bundle spaces over toric manifolds generalizing a recent result of B. Lian, K. Liu and S.-T. Yau. We also establish a correspondence (see the extensive footnote in section 4) between their new proof of the genus 0 mirror conjecture for quintic 3-folds and our proof of the same conjecture given two years ago. Research supported by NSF grants DMS-93-21915 and DMS-97-04774

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Gromov-Witten Invariants And Virasoro Conjecture

The Virasoro conjecture predicts that the generating function of Gromov-Witten invariants is annihilated by infinitely many differential operators which form a half branch of the Virasoro algebra. This conjecture was proposed by Eguchi, Hori and Xiong [EHX2] and also by S. Katz [Ka] (see also [EJX]). It provides a powerful tool in the computation of Gromov-Witten invariants. In [LT], the author...

متن کامل

Gromov–Witten Invariants of Toric Fibrations

We prove a conjecture of Artur Elezi [4] in a generalized form suggested by Givental [5]. Namely, our main result relates genus-0 Gromov–Witten invariants of a bundle space with such invariants of the base, provided that the fiber is a toric manifold. When the base is the point, a new proof of mirror theorems by A. Givental [6] and H. Iritani [9] for toric manifolds is obtained. 1 Formulations ...

متن کامل

Evidence for a conjecture of Pandharipande

In [3], Pandharipande studied the relationship between the enumerative geometry of certain 3-folds and the Gromov-Witten invariants. In some good cases, enumerative invariants (which are manifestly integers) can be expressed as a rational combination of Gromov-Witten invariants. Pandharipande speculated that the same combination of invariants should yield integers even when they do not have any...

متن کامل

New Recursions for Genus-zero Gromov-witten Invariants

New relations among the genus-zero Gromov-Witten invariants of a complex projective manifold X are exhibited. When the cohomology of X is generated by divisor classes and classes “with vanishing one-point invariants,” the relations determine many-point invariants in terms of one-point invariants. 0. Introduction The localization theorem for equivariant cohomology has recently been used with gre...

متن کامل

Wall-crossings in Toric Gromov–witten Theory I: Crepant Examples

The Crepant Resolution Conjecture of Ruan and Bryan–Graber asserts that certain generating functions for genus-zero Gromov–Witten invariants of an orbifold X can be obtained from their counterparts for a crepant resolution of X by analytic continuation followed by specialization of parameters. In this paper we use mirror symmetry to determine the relationship between the genus-zero Gromov–Witte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005