Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.
نویسندگان
چکیده
We present theoretical and experimental results on the mechanical damping of an atomic force microscope cantilever strongly coupled to a self-assembled InAs quantum dot. When the cantilever oscillation amplitude is large, its motion dominates the charge dynamics of the dot which in turn leads to nonlinear, amplitude-dependent damping of the cantilever. We observe highly asymmetric line shapes of Coulomb blockade peaks in the damping that reflect the degeneracy of energy levels on the dot. Furthermore, we predict that excited state spectroscopy is possible by studying the damping versus oscillation amplitude, in analogy with varying the amplitude of an ac gate voltage.
منابع مشابه
Sensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory
A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...
متن کاملSensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory
A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...
متن کاملScanned probe imaging of single-electron charge states in nanotube quantum dots.
An atomic force microscope was used to study single-electron motion in nanotube quantum dots. By applying a voltage to the microscope tip, the number of electrons occupying the quantum dot could be changed, causing Coulomb oscillations in the nanotube conductance. Spatial maps of these oscillations were used to locate individual dots and to study the electrostatic coupling between the dot and t...
متن کاملExcited-state spectroscopy on an individual quantum dot using atomic force microscopy.
We present a new charge sensing technique for the excited-state spectroscopy of individual quantum dots, which requires no patterned electrodes. An oscillating atomic force microscope cantilever is used as a movable charge sensor as well as gate to measure the single-electron tunneling between an individual self-assembled InAs quantum dot and back electrode. A set of cantilever dissipation vers...
متن کاملAn Electromechanical Which–Path Interferometer
We investigate the possibility of an electromechanical which–path interferometer, in which electrons travelling through an Aharonov–Bohm ring incorporating a quantum dot in one of the arms are dephased by an interaction with the fundamental flexural mode of a radio frequency cantilever. The cantilever is positioned so that its tip lies just above the dot and a bias is applied so that an electri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2010