Preservation of support and positivity for solutions of degenerate evolution equations

نویسندگان

  • David M Ambrose
  • Douglas Wright
چکیده

Abstract We prove that sufficiently smooth solutions of equations of a certain class have two interesting properties. These evolution equations are in a sense degenerate, in that every term on the right-hand side of the evolution equation has either the unknown or its first spatial derivative as a factor. We first find a conserved quantity for the equation: the measure of the set on which the solution is non-zero. Second, we show that solutions which are initially non-negative remain non-negative for all times. These properties rely heavily upon the degeneracy of the leading order term. When the equation is more degenerate, we are able to prove that there are additional conserved quantities: the measure of the set on which the solution is positive and the measure of the set on which the solution is negative. To illustrate these results, we give examples of equations with nonlinear dispersion which have solutions in spaces with sufficient regularity to satisfy the hypotheses of the support and positivity theorems. An important family of equations with nonlinear dispersion are the Rosenau–Hyman compacton equations; there is no existence theory yet for these equations, but the known solutions of the compacton equations are of lower regularity than is needed for the preceding theorems. We prove an additional positivity theorem which applies to solutions of the same family of equations in a function space which includes some solutions of compacton equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Modified F-Expansion Method Applied to Coupled System of Equation

A modified F-expansion method to find the exact traveling wave solutions of  two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Time compactness tools for discretized evolution equations and applications to degenerate parabolic PDEs

We discuss several techniques for proving compactness of sequences of approximate solutions to discretized evolution PDEs. While the well-known AubinSimon kind functional-analytic techniques were recently generalized to the discrete setting by Gallouët and Latché [15], here we discuss direct techniques for estimating the time translates of approximate solutions in the space L1. One important re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010