Multimode fibre based imaging for optically cleared samples

نویسندگان

  • Ivan Gusachenko
  • Jonathan Nylk
  • Javier A. Tello
  • Kishan Dholakia
چکیده

Optical clearing is emerging as a popular approach particularly for studies in neuroscience. However the use of corrosive clearing solutions typically requires sophisticated objectives or extreme care with optical components chosen for single- or multi-photon imaging. In contrast to the use of complex, custom-made microscope objectives, we show that the use of a corrected multimode fibre (MMF) offers a route that is resistant to corrosion, can be used in clearing media, is not constrained by the refractive index of the immersion medium and offers flexible working distances. Using a corrected MMF, we demonstrate fluorescence imaging of beads and stained neuroblastoma cells through optically cleared mouse brain tissue, as well as imaging in an extreme oxidative environment to show the versatility of our approach. Additionally, we perform Raman imaging of polystyrene beads in clearing media to demonstrate that this approach may be used for vibrational spectroscopy of optically cleared samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues.

We present a novel approach allowing for a simple, fast and automated morphological analysis of three-dimensional image stacks (z-stacks) featuring fibrillar structures from optically cleared soft biological tissues. Five non-atherosclerotic tissue samples from human abdominal aortas were used to outline the multi-purpose methodology, applicable to various tissue types. It yields a three-dimens...

متن کامل

Exploiting multimode waveguides for pure fibre-based imaging

There has been an immense drive in modern microscopy towards miniaturization and fibre-based technology. This has been necessitated by the need to access hostile or difficult environments in situ and in vivo. Strategies to date have included the use of specialist fibres and miniaturized scanning systems accompanied by ingenious microfabricated lenses. Here we present a novel approach for this f...

متن کامل

Multimode fibre: Light-sheet microscopy at the tip of a needle

Light-sheet fluorescence microscopy has emerged as a powerful platform for 3-D volumetric imaging in the life sciences. Here, we introduce an important step towards its use deep inside biological tissue. Our new technique, based on digital holography, enables delivery of the light-sheet through a multimode optical fibre--an optical element with extremely small footprint, yet permitting complex ...

متن کامل

0.6Tb/s-km Multimode Fibre Feasibility-Experiment using 40-Channel DWDM over Quadrature-Subcarrier Channels

Abstract: We describe the complete implementation of a 204Gb/s throughput quadrature-subcarrier system for standard within-building 50μm multimode fibre applications. The simultaneous transmission of 40 DWDM channels, utilizing in-phase and quadrature 2.55Gb/s subcarrier signals, is shown to be feasible. Complete data and carrier synchronization was provided by a zero-latency, pilot-tone based,...

متن کامل

Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.

It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017