A Lattice - Structured Proof Technique Applied to a Minimum Spanning Tree Algorithm ( Extended
نویسندگان
چکیده
Highly-optimized concurrent algorithms are often hard to prove correct because they have no natural decomposition into separately provable parts. This paper presents a proof technique for the modular verification of such non-modular algorithms. It generalizes existing verification techniques based on a totally-ordered hierarchy of refinements to allow a partiallyordered hierarchy-that is: a lattice of different views of the algorithm. The technique is applied to the well-known distributed minimum spanning tree algorithm of Gallager, Humblet and Spira, which has until recently lacked a rigorous proof.
منابع مشابه
OPTIMIZATION OF TREE-STRUCTURED GAS DISTRIBUTION NETWORK USING ANT COLONY OPTIMIZATION: A CASE STUDY
An Ant Colony Optimization (ACO) algorithm is proposed for optimal tree-structured natural gas distribution network. Design of pipelines, facilities, and equipment systems are necessary tasks to configure an optimal natural gas network. A mixed integer programming model is formulated to minimize the total cost in the network. The aim is to optimize pipe diameter sizes so that the location-alloc...
متن کاملA Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملA Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study
A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...
متن کاملNp-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem
The minimum vertex ranking spanning tree problem (MVRST) is to find a spanning tree of G whose vertex ranking is minimum. In this paper, we show that MVRST is NP-hard. To prove this, we polynomially reduce the 3-dimensional matching problem to MVRST. Moreover, we present a ds 2 e+1 blog2(Ds+1)c+1 -approximation algorithm for MVRST where Ds is the minimum diameter of spanning trees of G.
متن کاملSOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM
In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...
متن کامل