Dispersion relation for surface plasmon polaritons on a Schottky junction.
نویسندگان
چکیده
The conventional analysis of surface plasmon modes on dielectric-metal interfaces requires clearly defining the permittivity discontinuity at the interface. A pivotal assumption of such an analysis is that the formation of the dielectric-metal interface does not change the material properties and the materials forming the interface have identical permittivities before and after the formation of the interface. However, this assumption breaks down if an interface is made between a metal and a semiconductor which is commonly known as a Schottky junction. Under certain conditions, such an interface can sustain a surface plasmon polariton (SPP) mode. It is also possible to change the properties of the media surrounding the Schottky junction interface by applying an external potential difference across the junction. Central to the understanding of the SPP mode behaviour in such a complex morphological interface is the dispersion relation which defines the feasible SPP modes and their characteristics. Here, we carry out a detailed analysis to derive an analytical expression for the dispersion relation for a Schottky junction. Our analysis takes into account the space charge layer formed due to the charge distribution across the Schottky junction and resulting new boundary conditions.
منابع مشابه
Exact dispersion relation for nonlinear plasmonic waveguides
We derive an exact dispersion relation for the surface plasmon polaritons of a nonlinear plasmonic waveguide using exact field decomposition of TM waves. Our approach generalizes the known linear dispersion relations to the case of a medium nonlinearity of the form εNL = εL + α|E|2n. We apply the unique dispersion relation to a plasmonic waveguide with a Kerr-type nonlinearity (n = 1) and show ...
متن کاملStrong coupling between surface plasmon polaritons and Sulforhodamine 101 dye
We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splitt...
متن کاملCompetition between Anderson localization and leakage of surface-plasmon polaritons on randomly rough periodic metal surfaces
The competition between strong localization and radiative damping is studied for surface-plasmon polaritons propagating along a finite, randomly rough metallic surface that is periodic on average, by means of both numerical simulations and perturbation-theoretic calculations. Our results show that localization is the predominant contribution to the exponential decay of the transmission. In addi...
متن کاملTunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces
Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under appli...
متن کاملar X iv : p hy si cs / 0 60 91 58 v 1 1 9 Se p 20 06 Channel plasmon - polaritons : modal shape , dispersion , and losses
We theoretically study channel plasmon-polaritons (CPPs) with a geometry similar to that in recent experiments at telecom wavelengths (Bozhevolnyi et al., Nature 440, 508 (2006)). The CPP modal shape, dispersion relation, and losses are simulated using the multiple multipole method and the finite difference time domain technique. It is shown that, with the increase of the wavelength, the fundam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2012