Forest-Like Abstract Voronoi Diagrams in Linear Time
نویسندگان
چکیده
Voronoi diagrams are a well-studied data structure of proximity information, and although most cases require Ω(n log n) construction time, it is interesting and useful to develop linear-time algorithms for certain Voronoi diagrams. For example, the Voronoi diagram of points in convex position, and the medial axis and constrained Voronoi diagram of a simple polygon are a tree or forest structure and can be computed in linear time. In order to provide a more general approach, we study abstract Voronoi diagrams in a domain where each site has a unique face touching the boundary of the domain, implying that the diagram is a forest-like structure, and develop a linear-time algorithm. Since abstract Voronoi diagrams are a category of Voronoi diagrams, our algorithm works for many concrete Voronoi diagrams.
منابع مشابه
Deletion in abstract Voronoi diagrams in expected linear time
Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open problem for a long time. Similarly for various concrete Voronoi diagrams of generalized sites, other than points. In this paper we present a simple, expected linear-time algorithm to update an abstract Voronoi diagram after deletion. We introduce the concept of a Voronoi-like diagram, a relaxed ver...
متن کاملVoronoi Diagrams in Linear Time ∗
Voronoi diagrams are a well-studied data structure of proximity information, and although most cases require Ω(n log n) construction time, it is interesting and useful to develop linear-time algorithms for certain Voronoi diagrams. We develop a linear-time algorithm for abstract Voronoi diagrams in a domain where each site has a unique face and no pair of bisectors intersect outside the domain....
متن کاملNew Results on Abstract Voronoi Diagrams
Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To f...
متن کاملRandomized construction diagrams * incremental of abstract Voronoi Rolf
Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider cl...
متن کاملAn Expected Linear-Time Algorithm for the Farthest-Segment Voronoi Diagram
We present linear-time algorithms to construct tree-structured Voronoi diagrams, after the sequence of their regions at infinity or along a given boundary is known. We focus on Voronoi diagrams of line segments, including the farthest-segment Voronoi diagram, the order-(k+1) subdivision within a given order-k Voronoi region, and deleting a segment from a nearest-neighbor diagram. Although tree-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 68 شماره
صفحات -
تاریخ انتشار 2014