Simple Polynomial Classes of Chaotic Jerky Dynamics

نویسندگان

  • Ralf Eichhorn
  • Stefan J Linz
  • Peter H
چکیده

Third-order explicit autonomous di€erential equations, commonly called jerky dynamics, constitute a powerful approach to understand the properties of functionally very simple but nonlinear three-dimensional dynamical systems that can exhibit chaotic long-time behavior. In this paper, we investigate the dynamics that can be generated by the two simplest polynomial jerky dynamics that, up to these days, are known to show chaotic behavior in some parameter range. After deriving several analytical properties of these systems, we systematically determine the dependence of the long-time dynamical behavior on the system parameters by numerical evaluation of Lyapunov spectra. Some features of the systems that are related to the dependence on initial conditions are also addressed. The observed dynamical complexity of the two systems is discussed in connection with the existence of homoclinic orbits .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows

Third-order explicit autonomous differential equations in one scalar variable or, mechanically interpreted, jerky dynamics constitute an interesting subclass of dynamical systems that can exhibit many major features of regular and irregular or chaotic dynamical behavior. In this paper, we investigate the circumstances under which three dimensional autonomous dynamical systems possess at least o...

متن کامل

On the Dynamics of the Family axd(x − 1) + x

In this paper we consider the dynamics of the real polynomials of degree d + 1 with a fixed point of multiplicity d ≥ 2. Such polynomials are conjugate to fa,d(x) = axd(x−1)+x, a ∈ R{0}, d ∈ N. Our aim is to study the dynamics fa,d in some special cases.

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

Synchronization of simple chaotic flows

Nonlinear scalar third-order differential equation or jerky dynamics ... x = J (x, ẋ, ẍ) have recently attracted considerable interest since they constitute an important tool to identify and classify elementary chaotic flows. We investigate whether and under what conditions such systems can be synchronized by various coupling schemes such as the methods of Pecora– Carroll and Cuomo–Oppenheim, B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002