CT colonography: does improved z resolution help computer-aided polyp detection?

نویسندگان

  • Padmavathi Sundaram
  • Christopher F Beaulieu
  • David S Paik
  • Pamela Schraedley-Desmond
  • Sandy Napel
چکیده

Multislice helical CT offers several retrospective choices of longitudinal (z) resolution at a given detector collimation setting. We sought to determine the effect of z resolution on the performance of a computer-aided colonic polyp detector, since a human reader and a computer-aided polyp detector may have optimal performances at different z resolutions. We ran a computer-aided polyp detection algorithm on phantom data sets as well as data obtained from a single patient. All data were reconstructed at various slice thicknesses ranging from 1.25 to 10 mm. We studied the performance of the detector at various ranges of polyp sizes using free-response receiver-operating characteristic analyses. We also studied contrast-to-noise ratios (CNR) as a function of slice thickness and polyp size. For the phantom data, reducing the slice thickness from 5 to 1.25 mm improves sensitivity from 84.5% to 98.3% (all polyps), from 61.4% to 95.5% (polyps in the range [0, 5) mm) and from 97.7% to 100% (polyps in the range [5, 10) mm) at a false positive rate of 20 per data set. For polyps larger than 10 mm, there is no significant improvement in detection sensitivity when slice thickness is reduced. CNRs showed expected behavior with slice thickness and polyp size, but in all cases remained high (> 4). The results for the patient data followed similar patterns to that of the phantom case. Thus we conclude that for this detector, the optimal slice thickness is dependent upon the size of the smallest polyps to be detected. For detection of polyps 10 mm and larger, reconstruction of 5 mm sections may be sufficient. Further study is required to generalize these results to a broader population of patients scanned on different scanners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Feature Selection for Polyp Detection in CT Colonography

In this paper we describe a computer aided detection (CAD) algorithm for robust detection of polyps in computed tomography (CT) colonography. The devised algorithm identifies suspicious polyp candidate surfaces using the surface normal intersection, Hough transform, 3D histogram analysis, region growing and a convexity test. From these detected surfaces we extract statistical and morphological ...

متن کامل

Computer-aided diagnosis scheme for detection of polyps at CT colonography.

Colon cancer is one of the leading causes of cancer deaths in the United States. However, most colon cancers can be prevented if precursor colonic polyps are detected and removed. An advanced computer-aided diagnosis (CAD) scheme was developed for the automated detection of polyps at computed tomographic (CT) colonography. A region encompassing the colonic wall is extracted from an isotropic vo...

متن کامل

3D Colon Object Reconstruction Framework in CT Colonography

Colorectal cancer, also called colon cancer or bowel cancer, includes cancerous growths in the colon, rectum and appendix. It is the second leading cause of death caused by cancers and the third most common form of cancer in the United States [1]. Computer tomographic colonography (CTC) is a minimally invasive technique and rapidly evolving diagnostic tool for the location, detection and identi...

متن کامل

Detection of Protrusions in Curved Folded Surfaces Applied to Automated Polyp Detection in CT Colonography

Over the past years many computer aided diagnosis (CAD) schemes have been presented for the detection of colonic polyps in CT Colonography. The vast majority of these methods (implicitly) model polyps as approximately spherical protrusions. Polyp shape and size varies greatly, however and is often far from spherical. We propose a shape and size invariant method to detect suspicious regions. The...

متن کامل

Polyp Segmentation Method for CT Colonography Computer Aided Detection

We have developed a new method employing the Canny edge detector and Radon transformation to segment images of polyp candidates for CT colonography (CTC) computer aided polyp detection and obtain features useful for distinguishing true polyps from false positive detections. The technique is applied to two-dimensional subimages of polyp candidates selected using various 3-D shape and curvature c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 30 10  شماره 

صفحات  -

تاریخ انتشار 2003