Quasistatic behavior and force transmission in packing of irregular polyhedral particles

نویسندگان

  • Emilien Azéma
  • Gilles Saussine
چکیده

Dense packings composed of irregular polyhedral particles are investigated by numerical simulations under quasistatic triaxial compression. The Contact Dynamics method is used for this investigation with 40 000 particles. The effect of particle shape is analyzed by comparing this packing with a packing of similar particle size distribution but with spherical particles. We analyze the origin of the higher shear strength of the polyhedra packing by considering various anisotropy parameters characterizing the microstructure and force transmission. Remarkably, we find that the polyhedra packing has a lower fabric anisotropy in terms of branch vectors (joining the particle centers) than the sphere packing. In contrast, the polyhedra packing shows a much higher force anisotropy which is at the origin of its higher shear strength. The force anisotropy in the polyhedra packing is shown to be related to the formation of face-face contacts. In particular, most face-face contacts belong to strong force chains along the major principal stress direction whereas vertex-face and edge-edge contacts are correlated with weak forces and oriented on average along the minor principal stress direction in steady shearing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles

By means of contact dynamics simulations, we investigate a dense packing composed of polyhedral particles under quasistatic shearing. The effect of particle shape is analyzed by comparing the polyhedra packing with a packing of similar characteristics except for the spherical shape of the particles. The polyhedra packing shows higher shear stress and dilatancy but similar stress-dilatancy relat...

متن کامل

Regime transitions of granular flow in a shear cell: a micromechanical study.

The regime transitions of granular flow in a model shear cell are investigated numerically with a stress-controlled boundary condition. The correlations between the elastically and kinetically scaled stresses and the packing fraction are examined, and two packing fractions (0.58 and 0.50) are identified for the quasistatic to intermediate and intermediate to inertial regime transitions. The pro...

متن کامل

Packings of irregular polyhedral particles: strength, structure, and effects of angularity.

We present a systematic numerical investigation of the shear strength and structure of granular packings composed of irregular polyhedral particles. The angularity of the particles is varied by increasing the number of faces from 8 (octahedronlike shape) to 596. We find that the shear strength increases with angularity up to a maximum value and saturates as the particles become more angular (be...

متن کامل

Stability, deformation, and variability of granular fills composed of polyhedral particles.

By means of extensive contact dynamics simulations, we investigate the mechanical equilibrium and deformation of a granular material composed of irregular polyhedral particles confined between two horizontal frictional planes. We show that, as a consequence of mobilized wall-particle friction forces at the top and bottom boundaries, the transient deformation induced by a constant vertical load ...

متن کامل

Solvation Force of Ellipse-Shaped Molecules Moving in One Dimension and Confined between Two Parallel Planar Walls

     The model fluids containing hard ellipses (HEs) and Gay-Berne (GB) particles where their center is moving in one dimension and confined between two parallel walls with different interactions are investigated using Monte Carlo simulation, NVT ensemble. The dependency of fluid pressure with respect to the wall distances is studied. The oscillatory behaviors are seen in this quantity against ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008