Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock.
نویسندگان
چکیده
Synthesis of trehalose in the yeast Saccharomyces cerevisiae is catalysed by the trehalose-6-phosphate (Tre6P) synthase/phosphatase complex, which is composed of at least three different subunits encoded by the genes TPS1, TPS2, and TSL1. Previous studies indicated that Tps1 and Tps2 carry the catalytic activities of trehalose synthesis, namely Tre6P synthase (Tps1) and Tre6P phosphatase (Tps2), while TsI1 was suggested to have regulatory functions. In this study two different approaches have been used to clarify the molecular composition of the trehalose synthase complex as well as the functional role of its potential subunits. Two-hybrid analyses of the in vivo interactions of Tps1, Tps2, TsI1, and Tps3, a protein with high homology to TsI1, revealed that both TsI1 and Tps3 can interact with Tps1 and Tps2; the latter two proteins also interact with each other. In addition, trehalose metabolism upon heat shock was analysed in a set of 16 isogenic yeast strains carrying deletions of TPS1, TPS2, TSL1, and TPS3 in all possible combinations. These results not only confirm the previously suggested roles for Tps1 and Tps2, but also provide, for the first time, evidence that TsI1 and Tps3 may share a common function with respect to regulation and/or structural stabilization of the Tre6P synthase/phosphatase complex in exponentially growing, heat-shocked cells.
منابع مشابه
Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity.
Preparations of the trehalose-6-phosphate synthase/phosphatase complex from Saccharomyces cerevisiae contain three polypeptides with molecular masses 56, 100 and 130 kDa, respectively. Recently, we have cloned the gene for the 56-kDa subunit of this complex (TPS1) and found it to be identical with CIF1, a gene essential for growth on glucose and for the activity of trehalose-6-phosphate synthas...
متن کاملThe role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant.
In the yeast Saccharomyces cerevisiae, accumulation of the non-reducing disaccharide trehalose is triggered by various stimuli that activate the heat-schock response. Several studies have shown a close correlation between trehalose levels and tolerance to heat stress, suggesting that trehalose may be a protectant which contributes to thermotolerance. In this study, we have examined mutants defe...
متن کاملOn the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae.
When the temperature of exponential-phase cultures of Saccharomyces cerevisiae was abruptly raised from 28 to 40 degrees C, trehalose immediately accumulated, whereas the activities of trehalase and trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase complex increased after a lag period of about 10 min. Heat shock also induced a sudden rise in intracellular glucose, simultaneously ...
متن کاملComposition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex.
In the yeast Saccharomyces cerevisiae, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), which convert glucose 6-phosphate plus UDP-glucose to trehalose, are part of the trehalose synthase complex. In addition to the TPS1 (previously also called GGS1, CIF1, BYP1, FDP1, GLC6, and TSS1) and TPS2 (also described as HOG2 and PFK3) gene products, this complex also con...
متن کاملAcquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis.
Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 24 4 شماره
صفحات -
تاریخ انتشار 1997