Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors
نویسندگان
چکیده
BACKGROUND P2X3 and P2X2/3 purinergic receptor-channels, expressed in primary sensory neurons that mediate nociception, have been implicated in neuropathic and inflammatory pain responses. The phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) are involved in functional modulation of several types of ion channels. We report here evidence that these phospholipids are able to modulate the function of homomeric P2X3 and heteromeric P2X2/3 purinoceptors expressed in dorsal root ganglion (DRG) nociceptors and in heterologous expression systems. RESULTS In dissociated rat DRG neurons, incubation with the PI3K/PI4K inhibitor wortmannin at 35 microM induced a dramatic decrease in the amplitude of ATP- or alpha,beta-meATP-evoked P2X3 currents, while incubation with 100 nM wortmannin (selective PI3K inhibition) produced no significant effect. Intracellular application of PIP2 was able to fully reverse the inhibition of P2X3 currents induced by wortmannin. In Xenopus oocytes and in HEK293 cells expressing recombinant P2X3, 35 microM wortmannin incubation induced a significant decrease in the rate of receptor recovery. Native and recombinant P2X2/3 receptor-mediated currents were inhibited by incubation with wortmannin both at 35 microM and 100 nM. The decrease of P2X2/3 current amplitude induced by wortmannin could be partially reversed by application of PIP2 or PIP3, indicating a sensitivity to both phosphoinositides in DRG neurons and Xenopus oocytes. Using a lipid binding assay, we demonstrate that the C-terminus of the P2X2 subunit binds directly to PIP2, PIP3 and other phosphoinositides. In contrast, no direct binding was detected between the C-terminus of P2X3 subunit and phosphoinositides. CONCLUSION Our findings indicate a functional regulation of homomeric P2X3 and heteromeric P2X2/3 ATP receptors by phosphoinositides in the plasma membrane of DRG nociceptors, based on subtype-specific mechanisms of direct and indirect lipid sensing.
منابع مشابه
Adenosine triphosphate drives head and neck cancer pain through P2X2/3 heterotrimers
INTRODUCTION Cancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containi...
متن کاملSubtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors.
P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between α6β4-containing (α6β4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing α6β4 nAChRs and P2X2, P2X3, or P2X2/3 re...
متن کاملSubtype-Specific Mechanisms for Functional Interaction between a6b4* Nicotinic Acetylcholine Receptors and P2X Receptors
P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between a6b4-containing (a6b4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing a6b4 nAChRs and P2X2, P2X3, or P2X2/3 re...
متن کاملControl of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons.
Purinergic signaling contributes significantly to pain mechanisms, and the nociceptor-specific P2X3 ATP receptor channel is considered a target in pain therapeutics. Recent findings suggesting the coexpression of metabotropic P2Y receptors with P2X3 implies that ATP release triggers the activation of both ionotropic and metabotropic purinoceptors, with strong potential for functional interactio...
متن کاملP2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP.
Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Pain
دوره 5 شماره
صفحات -
تاریخ انتشار 2009