The Hodge Conjecture for Self-products of Certain K3 Surfaces

نویسنده

  • ULRICH SCHLICKEWEI
چکیده

We use a result of van Geemen [vG4] to determine the endomorphism algebra of the Kuga–Satake variety of a K3 surface with real multiplication. This is applied to prove the Hodge conjecture for self-products of double covers of P which are ramified along six lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real multiplication on K3 surfaces and Kuga Satake varieties

The endomorphism algebra of a K3 type Hodge structure is a totally real field or a CM field. In this paper we give a low brow introduction to the case of a totally real field. We give existence results for the Hodge structures, for their polarizations and for certain K3 surfaces. We consider the Kuga Satake variety of these Hodge structures and we discuss some examples. Finally we indicate vari...

متن کامل

ar X iv : m at h / 06 08 26 5 v 1 [ m at h . A G ] 1 0 A ug 2 00 6 COUNTEREXAMPLE TO THE HODGE CONJECTURE

We show that the Hodge conjecture is false in general for products of surfaces. We construct a K3 surface whose transcendental lattice has a self-isomorphism which is not a linear combination of self-isomorphisms which preserve cup products over Q up to nonzero multiples. We then find another surface mapping into it in which the transcendental lattice is generated by H 1 cup products according ...

متن کامل

m at h . A G ] 1 M ay 2 00 8 K 3 Surfaces of Finite Height over Finite Fields ∗ †

Arithmetic of K3 surfaces defined over finite fields is investigated. In particular, we show that any K3 surface X of finite height over a finite field k of characteristic p ≥ 5 has a quasi-canonical lifting Z to characteristic 0, and that for any such Z, the endormorphism algebra of the transcendental cycles V (Z), as a Hodge module, is a CM field over Q. The Tate conjecture for the product of...

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

The Real Regulator for a Product of K3 Surfaces

Let X be a general complex algebraic K3 surface, and CH2(X, 1) Bloch’s higher Chow group ([Blo1]). In [C-L2] it is proven that the real regulator r2,1 : CH 2(X, 1)⊗ R→ H1,1(X,R) is surjective (Hodge-D-conjecture). The question addressed in this paper is whether a similar story holds for products of K3 surfaces. We prove a general regulator result for a product of two surfaces, and then deduce, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009