Synchronisation of Partial Multi-Matchings via Non-negative Factorisations
نویسندگان
چکیده
In this work we study permutation synchronisation for the challenging case of partial permutations, which plays an important role for the problem of matching multiple objects (e.g. images or shapes). The term synchronisation refers to the property that the set of pairwise matchings is cycle-consistent, i.e. in the full matching case all compositions of pairwise matchings over cycles must be equal to the identity. Motivated by clustering and matrix factorisation perspectives of cycleconsistency, we derive an algorithm to tackle the permutation synchronisation problem based on non-negative factorisations. In order to deal with the inherent non-convexity of the permutation synchronisation problem, we use an initialisation procedure based on a novel rotation scheme applied to the solution of the spectral relaxation. Moreover, this rotation scheme facilitates a convenient Euclidean projection to obtain a binary solution after solving our relaxed problem. In contrast to state-of-the-art methods, our approach is guaranteed to produce cycle-consistent results. We experimentally demonstrate the efficacy of our method and show that it achieves better results compared to existing methods.
منابع مشابه
Perfect 1-Factorisations of Circulants with Small Degree
A 1-factorisation of a graph G is a decomposition of G into edge-disjoint 1-factors (perfect matchings), and a perfect 1-factorisation is a 1-factorisation in which the union of any two of the 1-factors is a Hamilton cycle. We consider the problem of the existence of perfect 1-factorisations of even order circulant graphs with small degree. In particular, we characterise the 3-regular circulant...
متن کاملOn the perfect 1-factorisation problem for circulant graphs of degree 4
A 1-factorisation of a graph G is a partition of the edge set of G into 1factors (perfect matchings); a perfect 1-factorisation of G is a 1-factorisation of G in which the union of any two of the 1-factors is a Hamilton cycle in G. It is known that for bipartite 4-regular circulant graphs, having order 2 (mod 4) is a necessary (but not sufficient) condition for the existence of a perfect 1-fact...
متن کاملOn Factorisations of Matrices and Abelian Groups
We establish correspondances between factorisations of finite abelian groups ( direct factors, unitary factors, non isomorphic subgroup classes ) and factorisations of integer matrices. We then study counting functions associated to these factorisations and find average orders. Mathematics Subject Classification 11M41,20K01,15A36.
متن کاملImproving Quality of Search Results Clustering with Approximate Matrix Factorisations
In this paper we show how approximate matrix factorisations can be used to organise document summaries returned by a search engine into meaningful thematic categories. We compare four different factorisations (SVD, NMF, LNMF and K-Means/Concept Decomposition) with respect to topic separation capability, outlier detection and label quality. We also compare our approach with two other clustering ...
متن کاملExact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کامل