A contact model for normal immersed collisions between a particle and a wall
نویسندگان
چکیده
The incompressible Navier–Stokes equations are solved numerically to predict the coupled motion of a falling particle and the surrounding fluid as the particle impacts and rebounds from a planar wall. The method is validated by comparing the numerical simulations of a settling sphere with experimental measurements of the sphere trajectory and the accompanying flow field. The normal collision process is then studied for a range of impact Stokes numbers. A contact model of the liquid–solid interaction and elastic effect is developed that incorporates the elasticity of the solids to permit the rebound trajectory to be simulated accurately. The contact model is applied when the particle is sufficiently close to the wall that it becomes difficult to resolve the thin lubrication layer. The model is calibrated with new measurements of the particle trajectories and reproduces the observed coefficient of restitution over a range of impact Stokes numbers from 1 to 1000.
منابع مشابه
Dynamics of particle - particle collisions in a viscous liquid
When two solid spheres collide in a liquid, the dynamic collision process is slowed by viscous dissipation and the increased pressure in the interparticle gap as compared with dry collisions. This paper investigates liquid-immersed head-on and oblique collisions, which complements previously investigated particle-on-wall immersed collisions. By defining the normal from the line of centers at co...
متن کاملCollision model for fully resolved simulations of flows laden with finite-size particles.
We present a collision model for particle-particle and particle-wall interactions in interface-resolved simulations of particle-laden flows. Three types of interparticle interactions are taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-solid contact. Long-range interactions are incorporated through an efficient and second-order-accurate immersed boundar...
متن کاملParticle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges
In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-M...
متن کاملCFD Modeling of the Feed Distribution System of a Gas-Solid Reactor
Granular flow simulation using CFD has received a lot of attention in recent years. In such cases, CFD is either, coupled with Discrete Element Method (DEM) techniques for appropriate incorporation of inter-particle collisions, or the Eulerian CFD approach is used in which granular particles are treated as they were fluid. In the present study, a CFD analysis was performed...
متن کاملModeling mechanical contact and lubrication in Direct Numerical Simulations of colliding particles
We developed a model for inexpensive Direct Numerical Simulations of particle-laden flow by fully resolving the hydrodynamics at all times except when the gap between colliding particles becomes comparable to the grid step. The resolved hydrodynamics were obtained with a previously developed pressure boundary integral method for direct fluid–particle simulations on Cartesian grids. The unresolv...
متن کامل