Assessment of disulfide and hinge modifications in monoclonal antibodies
نویسندگان
چکیده
During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso-Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by disulfide bond cleavage. Certain modifications such as disulfide induced aggregation and heterodimers from different antibodies are generally regarded critical with respect to safety. However, the detection of some modifications in endogenous antibodies isolated from human blood and the possibility of in vivo repair mechanisms may reduce some safety concerns.
منابع مشابه
Ligation Independent Cloning of Polycistronic, Genetically Modified, HuMAb4D5-8 F (ab') 2, in Bacterial Plasmid
In recent years, recombinant monoclonal antibodies and their derivatives have emerged as important targeted therapy agents. Monoclonal antibodies are extremely difficult to produce. So, the cost of production is very high and many people cannot afford these drugs. In this regard, choosing inexpensive and easy ways to manipulate production systems such as bacterial hosts to reduce the cost of ma...
متن کاملBiokinetic modelling of 89-Zr-labelled monoclonal antibodies for dosimetry assessment in humans
Background: Monoclonal antibodies have confirmed their merit as biotherapeutics across a wide spectrum of diseases, including cancer, heart disease, infection, and immune disorders. Materials and Methods: The dynamics of 89Zr-labelled monoclonal antibodies (MAb) after injection into the human body are modelled. This modified biokinetic model can be used for dose assessment not only for 89Zr-lab...
متن کاملStructural and functional characterization of disulfide isoforms of the human IgG2 subclass.
In the accompanying report ( Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194-16205 ), we have identified that the human IgG2 subclass exists as an ensemble of distinct isoforms, designated IgG2-A, -B, and -A/B, which differ by t...
متن کاملNon–antigen-contacting region of an asymmetric bispecific antibody to factors IXa/X significantly affects factor VIII-mimetic activity
While antibody engineering improves the properties of therapeutic antibodies, optimization of regions that do not contact antigens has been mainly focused on modifying the effector functions and pharmacokinetics of antibodies. We recently reported an asymmetric anti-FIXa/FX bispecific IgG4 antibody, ACE910, which mimics the cofactor function of FVIII by placing the two factors into spatial prox...
متن کاملProduction and Characterization of Murine Monoclonal Antibodies Recognizing Conformational and Linear Epitopes Localized on Human IgA2 Molecules
Background: There are two subclasses of human IgA (IgA1 and IgA2) that differ in antigenic properties and in chemical composition. The constant domains of α1 and α2 heavy chains have >95% sequence homology though major structural differences exist in the hinge region. Quantitation of IgA subclass levels depends on the availability of monoclonal antibodies (MAbs) specific for conserved conformat...
متن کامل