There is No Low Maximal D.C.E. Degree

نویسندگان

  • Marat M. Arslanov
  • S. Barry Cooper
  • Angsheng Li
چکیده

We show that for any computably enumerable (c.e.) degree a and any low n–c.e. degree l (n ≥ 1), if l < a, then there are n–c.e. degrees a0,a1 such that l < a0,a1 < a and a0 ∨ a1 = a. In particular, there is no low maximal d.c.e. degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

There Are No Maximal Low D.C.E. Degrees

We prove that there is no maximal low d.c.e degree.

متن کامل

There is no low maximal d. c. e. degree - Corrigendum

We give a corrected proof of an extension of the Robinson Splitting Theorem for the d.c.e. degrees. The purpose of this short paper is to clarify and correct the main result and proof contained in [1]. There we gave a simple proof that there exists no low maximal d.c.e. degree. This was obtained as an immediate corollary of the following strengthening of the Robinson Splitting Theorem (Theorem ...

متن کامل

Turing Definability in the Ershov Hierarchy

We obtain the first nontrivial d.c.e. Turing approximation to the class of computably enumerable (c.e.) degrees. This depends on the following extension of the splitting theorem for the d.c.e. degrees: For any d.c.e. degree a, any c.e. degree b, if b < a, then there are d.c.e. degrees x0,x1 such that b < x0,x1 < a and a = x0 ∨ x1. The construction is unusual in that it is incompatible with uppe...

متن کامل

The nonisolating degrees are nowhere dense in the computably enumerable degrees

The d.c.e. degrees were first studied by Cooper [5] and Lachlan who showed that there is a proper d.c.e degree, a d.c.e. degree containing no c.e. sets, and that every nonzero d.c.e. degree bounds a nonzero c.e. degree, respectively. The main motivation of research on the d.c.e. degrees is to study the differences between the structures of d.c.e. degrees and Δ2 degrees, and between the structur...

متن کامل

The Strongest Nonsplitting Theorem

Sacks [14] showed that every computably enumerable (c.e.) degree ≥ 0 has a c.e. splitting. Hence, relativising, every c.e. degree has a Δ2 splitting above each proper predecessor (by ‘splitting’ we understand ‘nontrivial splitting’). Arslanov [1] showed that 0′ has a d.c.e. splitting above each c.e. a < 0′. On the other hand, Lachlan [9] proved the existence of a c.e. a > 0 which has no c.e. sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2000