Dynamically feasible, energy efficient motion planning for skid-steered vehicles

نویسندگان

  • Nikhil Gupta
  • Camilo Ordonez
  • Emmanuel G. Collins
چکیده

Recent research has developed experimentally verified dynamic models for skid-steered wheeled vehicles and used these results to derive a power model for this important class of all-terrain vehicles. As presented in this paper, based on the torque limitations of the vehicle motors, the dynamic model can be used to develop payload and terrain-dependent minimum turn radius constraints and the power model can be used to predict the energy consumption of a given trajectory. This paper uses these results along with Sampling Based Model Predictive Optimization to develop an effective methodology for generating dynamically feasible, energy efficient trajectories for skid-steered autonomous ground vehicles (AGVs) and compares the resultant trajectories with those based on the standard distance optimal trajectories. The simulated and experimental results consider an AGV moving at a constant forward velocity on both wood and asphalt surfaces under various payloads. The results show that a small increase in the distance of a trajectory over the distance optimal trajectory can result in a dramatic savings in the AGV’s energy consumption. They also show that distance optimal planning can often produce trajectories that violate the motor torque constraints for skid-steered AGVs, which can result in poor navigation performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy efficient path planning for skid-steered autonomous ground vehicles

It is important to minimize the energy consumption of autonomous ground vehicles (AGVs) deployed in real world missions. One of the ways that this can be accomplished is to choose the vehicle’s motion to minimize the mechanical and electrical energy usage required by the vehicle’s motion. This paper considers energy efficient motion planning for skid-steered AGVs, an important and large class o...

متن کامل

Modeling of Skid-steered Wheeled Robotic Vehicles on Sloped Terrains

Skid-steered robots are commonly used in outdoor applications due to their mechanical simplicity, high maneuverability, and robustness. The maneuverability of these robots allows them, under ideal conditions (e.g., flat terrain and powerful actuators), to perform turning maneuvers ranging from point turns to straight line motion. However, sloped terrain, terrain with high friction, or actuator ...

متن کامل

Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles

Dynamic models and power models of autonomous ground vehicles are needed to enable realistic motion planning Howard & Kelly (2007); Yu et al. (2010) in unstructured, outdoor environments that have substantial changes in elevation, consist of a variety of terrain surfaces, and/or require frequent accelerations and decelerations. At least 4 different motion planning tasks can be accomplished usin...

متن کامل

Power Modeling of the Xrl Hexapedal Robot and Its Application to Energy Efficient Motion Planning

Analysis of the power consumption for walking and running robots is particularly important for trajectory planning tasks as it enables motion plans that minimize energy consumption and do not violate power limitations of the robot actuators. This paper builds upon previous work on wheeled skid-steered robots, and for curvilinear motion of the XRL hexapedal robot, presents models of the inner an...

متن کامل

Sampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments

This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Auton. Robots

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2017