Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem
نویسندگان
چکیده
Software development projects inevitably accumulate defects throughout the development process. Due to the high cost that defects can incur, careful consideration is crucial when predicting which sections of code are likely to contain defects. Classification algorithms used in machine learning can be used to create classifiers which can be used sensitive classification methods attempt to make predictions which incur the lowest classification cost. In this paper we propose a cost-sensitive classification technique called CSForest which is an ensemble of decision trees. We also propose a cost-sensitive voting technique called CSVoting in order to take advantage of the set of decision trees in minimizing the classification cost. We then investigate a potential solution to class imbalance within our decision forest algorithm. We empirically evaluate the proposed techniques comparing them with six (6) classifier algorithms on six (6) publicly available clean datasets that are commonly used in the research on software defect prediction. Our initial experimental results indicate a clear superiority of the proposed techniques over the existing ones. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملارائه یک روش فازی-تکاملی برای تشخیص خطاهای نرمافزار
Software defects detection is one of the most important challenges of software development and it is the most prohibitive process in software development. The early detection of fault-prone modules helps software project managers to allocate the limited cost, time, and effort of developers for testing the defect-prone modules more intensively. In this paper, according to the importance of soft...
متن کاملEnhanced Cost Sensitive Boosting Network for Software Defect Prediction
plays an important role in reducing the costs of software development and maintaining the high quality of software systems. The early prediction of defectproneness of the modules can allow software developers to allocate the limited resources on those defect-prone modules such that high quality software can be produced on time and within budget. It is a great challenge to address the class-imba...
متن کاملExtracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Syst.
دوره 51 شماره
صفحات -
تاریخ انتشار 2015