Deep Networks tag the location of bird vocalisations on audio spectrograms

نویسندگان

  • Lefteris Fanioudakis
  • Ilyas Potamitis
چکیده

This work focuses on reliable detection and segmentation of bird vocalizations as recorded in the open field. Acoustic detection of avian sounds can be used for the automatized monitoring of multiple bird taxa and querying in long-term recordings for species of interest. These tasks are tackled in this work, by suggesting two approaches: A) First, DenseNets are applied to weekly labeled data to infer the attention map of the dataset (i.e. Salience and CAM). We push further this idea by directing attention maps to the YOLO v2 Deepnet-based, detection framework to localize bird vocalizations. B) A deep autoencoder, namely the U-net, maps the audio spectrogram of bird vocalizations to its corresponding binary mask that encircles the spectral blobs of vocalizations while suppressing other audio sources. We focus solely on procedures requiring minimum human attendance, suitable to scan massive volumes of data, in order to analyze them, evaluate insights and hypotheses and identify patterns of bird activity. Hopefully, this approach will be valuable to researchers, conservation practitioners, and decision makers that need to design policies on biodiversity issues. Keywords—Deep learning, Salience map, DenseNet, U-net, bird detection, compuatational ecology

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-to-End Audiovisual Fusion with LSTMs

Several end-to-end deep learning approaches have been recently presented which simultaneously extract visual features from the input images and perform visual speech classification. However, research on jointly extracting audio and visual features and performing classification is very limited. In this work, we present an end-to-end audiovisual model based on Bidirectional Long Short-Term Memory...

متن کامل

Deep learning for detection of bird vocalisations

This work focuses on reliable detection of bird sound emissions as recorded in the open field. Acoustic detection of avian sounds can be used for the automatized monitoring of multiple bird taxa and querying in long-term recordings for species of interest for researchers, conservation practitioners, and decision makers. Recordings in the wild can be very noisy due to the exposure of the microph...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring

Trends in bird population sizes are an important indicator in nature conservation but measuring such sizes is a very difficult, labour intensive process. Enormous progress in audio signal processing and pattern recognition in recent years makes it possible to incorporate automated methods into the detection of bird vocalisations. These methods can be employed to support the census of population...

متن کامل

Recognition of Multiple Bird Species Based on Penalised Maximum Likelihood and HMM-Based Modelling of Individual Vocalisation Elements

This paper presents an extension of our recent work on recognition of multiple bird species from their vocalisations by incorporating an improved acoustic modelling. The acoustic scene is segmented into spectro-temporal isolated segments by employing a sinusoidal detection algorithm, which is able to handle multiple simultaneous bird vocalisations. Each segment is represented as a temporal sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04347  شماره 

صفحات  -

تاریخ انتشار 2017