RZ: A Tool for Bringing Constructive and Computable Mathematics Closer to Programming Practice

نویسندگان

  • Andrej Bauer
  • Christopher A. Stone
چکیده

Realizability theory is not just a fundamental tool in logic and computability. It also has direct application to the design and implementation of programs, since it can produce code interfaces for the data structure corresponding to a mathematical theory. Our tool, called RZ, serves as a bridge between the worlds of constructive mathematics and programming. By using the realizability interpretation of constructive mathematics, RZ translates specifications in constructive logic into annotated interface code in Objective Caml. The system supports a rich input language allowing descriptions of complex mathematical structures. RZ does not extract code from proofs, but allows any implementation method, from handwritten code to code extracted from proofs by other tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing Real Numbers With RZ

RZ is a tool which translates axiomatizations of mathematical structures to program specifications using the realizability interpretation of logic. This helps programmers correctly implement data structures for computable mathematics. RZ does not prescribe a particular method of implementation, but allows programmers to write efficient code by hand, or to extract trusted code from formal proofs...

متن کامل

Constructive Mathematics and Quantum Physics †

Our discussion takes place in the context of Bishop’s constructive mathematics (BISH; [3, 4]), in which “existence” is interpreted strictly as “constructibility.”3 One distinctive feature of BISH, compared with other varieties of constructive mathematics is that its results and proofs can be interpreted mutatis mutandis within classical (that is, traditional) mathematics, recursive mathematics ...

متن کامل

Realizability as the Connection between Computable and Constructive Mathematics

These are lecture notes for a tutorial seminar which I gave at a satellite seminar of “Computability and Complexity in Analysis 2004” in Kyoto. The main message of the notes is that computable mathematics is the realizability interpretation of constructive mathematics. The presentation is targeted at an audience which is familiar with computable mathematics but less so with constructive mathema...

متن کامل

Specifications via Realizability

We present a system, called RZ, for automatic generation of program specifications from mathematical theories. We translate mathematical theories to specifications by computing their realizability interpretations in the ML language augmented with assertions (as comments). While the system is best suited for descriptions of those data structures that can be easily described in mathematical langu...

متن کامل

Fuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma

The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2007