Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid
نویسندگان
چکیده
Abscisic acid (ABA) is a phytohormone critical for plant growth, development, and adaptation to various stress conditions. Plants have to adjust ABA levels constantly to respond to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning ABA levels remain elusive. Here we report that AtBG1, a beta-glucosidase, hydrolyzes glucose-conjugated, biologically inactive ABA to produce active ABA. Loss of AtBG1 causes defective stomatal movement, early germination, abiotic stress-sensitive phenotypes, and lower ABA levels, whereas plants with ectopic AtBG1 accumulate higher ABA levels and display enhanced tolerance to abiotic stress. Dehydration rapidly induces polymerization of AtBG1, resulting in a 4-fold increase in enzymatic activity. Furthermore, diurnal increases in ABA levels are attributable to polymerization-mediated AtBG1 activation. We propose that the activation of inactive ABA pools by polymerized AtBG1 is a mechanism by which plants rapidly adjust ABA levels and respond to changing environmental cues.
منابع مشابه
A Quick Release Mechanism for Abscisic Acid
The hormone abscisic acid regulates development and survival of plants in response to environmental stresses. now demonstrate that in response to stress, abscisic acid can be made available via polymerization of a beta-glucosidase enzyme. This enzyme is reported to hydrolyze glucose-conjugated abscisic acid, thus increasing active abscisic acid concentrations.
متن کاملNew developments in abscisic acid perception and metabolism.
Abscisic acid is a powerful signaling molecule that accumulates in response to abiotic stress. However, no potential receptors that could perceive this increase in abscisic acid had been identified until recent reports of three abscisic acid binding proteins: the nuclear protein Flowering Time Control Locus A, the chloroplast protein Magnesium Protoporphyrin-IX Chelatase H subunit, and the memb...
متن کاملGeneration of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis.
A noninvasive, cell-autonomous reporter system was developed to monitor the generation and distribution of physiologically active pools of abscisic acid (ABA). ABA response (abi1-1) and biosynthesis (aba2-1) mutants of Arabidopsis (Arabidopsis thaliana) were used to validate the system in the presence and absence of water stress. In the absence of water stress, low levels of ABA-dependent repor...
متن کاملA vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis.
The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA...
متن کاملAbscisic Acid Uridine Diphosphate Glucosyltransferases Play a Crucial Role in Abscisic Acid Homeostasis in Arabidopsis1[C][W]
The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 126 شماره
صفحات -
تاریخ انتشار 2006