Coxeter-like complexes

نویسندگان

  • Eric Babson
  • Victor Reiner
چکیده

Motivated by the Coxeter complex associated to a Coxeter system (W, S), we introduce a simplicial regular cell complex ∆(G, S) with a G-action associated to any pair (G, S) where G is a group and S is a finite set of generators for G which is minimal with respect to inclusion. We examine the topology of ∆(G, S), and in particular the representations of G on its homology groups. We look closely at the case of the symmetric group Sn minimally generated by (not necessarily adjacent) transpositions, and their type-selected subcomplexes. These include not only the Coxeter complexes of type A, but also the well-studied chessboard complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shelling Coxeter-like Complexes and Sorting on Trees

In their work on ‘Coxeter-like complexes’, Babson and Reiner introduced a simplicial complex ∆T associated to each tree T on n nodes, generalizing chessboard complexes and type A Coxeter complexes. They conjectured that ∆T is (n− b−1)-connected when the tree has b leaves. We provide a shelling for the (n − b)skeleton of ∆T , thereby proving this conjecture. In the process, we introduce notions ...

متن کامل

ar X iv : m at h / 05 02 15 9 v 1 [ m at h . G T ] 8 F eb 2 00 5 POINT CONFIGURATIONS AND BLOW - UPS OF COXETER COMPLEXES

The minimal blow-ups of simplicial Coxeter complexes are natural generalizations of the real moduli space of Riemann spheres. They inherit a tiling by the graph-associahedra convex polytopes. We obtain configuration space models for these manifolds (of spherical and Euclidean Coxeter type) using particles on lines and circles. A (Fulton-MacPherson) compactification of these spaces is described ...

متن کامل

Brick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

Brick Polytopes of Spherical Subword Complexes and Generalized Associahedra

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

Coxeter Systems with Two-dimensional Davis-vinberg Complexes

In this paper, we study Coxeter systems with two-dimensional DavisVinberg complexes. We show that for a Coxeter group W , if (W, S) and (W, S) are Coxeter systems with two-dimensional Davis-Vinberg complexes, then there exists S ⊂ W such that (W, S) is a Coxeter system which is isomorphic to (W, S) and the sets of reflections in (W, S) and (W, S) coincide. Hence the Coxeter diagrams of (W, S) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics & Theoretical Computer Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2004