Loosely Coupled Formulations for Automated Planning: An Integer Programming Perspective
نویسندگان
چکیده
We represent planning as a set of loosely coupled network flow problems, where each network corresponds to one of the state variables in the planning domain. The network nodes correspond to the state variable values and the network arcs correspond to the value transitions. The planning problem is to find a path (a sequence of actions) in each network such that, when merged, they constitute a feasible plan. In this paper we present a number of integer programming formulations that model these loosely coupled networks with varying degrees of flexibility. Since merging may introduce exponentially many ordering constraints we implement a so-called branch-and-cut algorithm, in which these constraints are dynamically generated and added to the formulation when needed. Our results are very promising, they improve upon previous planning as integer programming approaches and lay the foundation for integer programming approaches for cost optimal planning.
منابع مشابه
A mixed integer linear programming formulation for a multi-stage, multi-Product, multi-vehicle aggregate production-distribution planning problem
In today’s competitive market place, companies seek an efficient structure of supply chain so as to provide customers with highest value and achieve competitive advantage. This requires a broader perspective than just the borders of an individual company during a supply chain. This paper investigates an aggregate production planning problem integrated with distribution issues in a supply chain ...
متن کاملDecomposition of loosely coupled integer programs: A multiobjective perspective
We consider integer programming (IP) problems consisting of (possibly a large number of) subsystems and a small number of coupling constraints that link variables from different subsystems. Such problems are called loosely coupled or nearly decomposable. Motivated by recent developments in multiobjective programming (MOP), we develop a MOP-based decomposition algorithm to solve loosely coupled ...
متن کاملReviving Integer Programming Approaches for AI Planning: A Branch-and-Cut Framework
The conventional wisdom in the planning community is that planners based on integer programming (IP) techniques cannot compete with satisfiability and constraint satisfaction based planners. In this paper we challenge this perception of IP techniques by presenting novel formulations that outperform the most efficient SAT-based planner that currently exists. We will present a series of IP formul...
متن کاملA Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning
The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...
متن کاملOn the Use of Integer Programming Models in AI Planning
Recent research has shown the promise of using propositional reasoning and search to solve AI planning problems. In this paper, we further explore this area by applying Integer Programming to solve AI planning problems. The application of Integer Programming to AI planning has a potentially significant advantage, as it allows quite naturally for the incorporation of numerical constraints and ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2008