Two Linear Transformations Preserving Log-Concavity
نویسنده
چکیده
In this paper we prove that the linear transformation
منابع مشابه
Linear transformations preserving log-concavity
In this paper, we prove that the linear transformation yi = i ∑ j=0 ( m+ i n+ j ) xj , i = 0, 1, 2, . . . preserves the log-concavity property. © 2002 Elsevier Science Inc. All rights reserved.
متن کاملLinear Transformations Preserving the Strong $q$-log-convexity of Polynomials
In this paper, we give a sufficient condition for the linear transformation preserving the strong q-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong q-log-convexity. In addition, our results not only extend some known results, but also imply the str...
متن کاملOn Log-concavity of a Class of Generalized Stirling Numbers
This paper considers the generalized Stirling numbers of the first and second kinds. First, we show that the sequences of the above generalized Stirling numbers are both log-concave under some mild conditions. Then, we show that some polynomials related to the above generalized Stirling numbers are q-log-concave or q-log-convex under suitable conditions. We further discuss the log-convexity of ...
متن کاملA Note on Log-Concavity
This is a small observation concerning scale mixtures and their log-concavity. A function f(x) ≥ 0, x ∈ Rn is called log-concave if f (λx + (1− λ)y) ≥ f(x)f(y) (1) for all x,y ∈ Rn, λ ∈ [0, 1]. Log-concavity is important in applied Bayesian Statistics, since a distribution with a log-concave density is easy to treat with many different approximate inference techniques. For example, log-concavit...
متن کاملSome Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کامل