Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans
نویسندگان
چکیده
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
منابع مشابه
Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/beta-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of func...
متن کاملThe Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression.
Inactivation of the Caenorhabditis elegans APC-related gene (apr-1) has pointed at two separate functions of apr-1. First, apr-1 is required for the migration of epithelial cells during morphogenesis of the embryo. In this process, APR-1 may act in a Cadherin/alpha-Catenin/beta-Catenin complex as a component of adherens junctions. Second, apr-1 is required for Hox gene expression, most likely b...
متن کاملStage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development.
The Caenorhabditis elegans gene lin-29 is required for the terminal differentiation of the lateral hypodermal seam cells during the larval-to-adult molt. We find that lin-29 protein accumulates in the nuclei of these cells, consistent with its predicted role as a zinc finger transcription factor. The earliest detectable LIN-29 accumulation in seam cell nuclei is during the last larval stage (L4...
متن کاملThe Caenorhabditis elegans GATA factor elt-1 is essential for differentiation and maintenance of hypodermal seam cells and for normal locomotion.
The Caenorhabditis elegans GATA transcription factor elt-1 has previously been shown to have a central role in the specification of hypodermal (epidermal) cell fates and acts several cell divisions before the birth of hypodermal cells. Here we report that elt-1 also has essential functions during subsequent development. Reporter gene studies show that elt-1 expression is maintained in lateral s...
متن کاملWnt signal from multiple tissues and lin-3/EGF signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans.
The Caenorhabditis elegans vulva has been a valuable paradigm for defining components of signaling pathways and elucidating how signaling events are coordinated to generate a developmental pattern. Vulval precursor cells (VPCs) are induced to adopt vulval fates in the third larval stage by LIN-3, an EGF-like signal produced by the gonad. Competence to respond to the inductive signal requires th...
متن کامل