Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis.

نویسندگان

  • Annette Bollmann
  • Ingo Schmidt
  • Aaron M Saunders
  • Mette H Nicolaisen
چکیده

The effect of short-term ammonia starvation on Nitrosospira briensis was investigated. The ammonia-oxidizing activity was determined in a concentrated cell suspension with a NOx biosensor. The apparent half-saturation constant [Km(app)] value of the NH3 oxidation of N. briensis was 3 microM NH3 for cultures grown both in continuous and batch cultures as determined by a NOx biosensor. Cells grown on the wall of the vessel had a lower Km(app) value of 1.8 microM NH3. Nonstarving cultures of N. briensis showed potential ammonia-oxidizing activities of between 200 to 250 microM N h(-1), and this activity decreased only slowly during starvation up to 10 days. Within 10 min after the addition of fresh NH4+, 100% activity was regained. Parallel with activity measurements, amoA mRNA and 16S rRNA were investigated. No changes were observed in the 16S rRNA, but a relative decrease of amoA mRNA was observed during the starvation period. During resuscitation, an increase in amoA mRNA expression was detected simultaneously. The patterns of the soluble protein fraction of a 2-week-starved culture of N. briensis showed only small differences in comparison to a nonstarved control. From these results we conclude that N. briensis cells remain in a state allowing fast recovery of ammonia-oxidizing activity after addition of NH4+ to a starved culture. Maintaining cells in this kind of active state could be the survival strategy of ammonia-oxidizing bacteria in nature under fluctuating NH4+ availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray.

The relationship between environmental factors and functional gene diversity of ammonia-oxidizing bacteria (AOB) was investigated across a transect from the freshwater portions of the Chesapeake Bay and Choptank River out into the Sargasso Sea. Oligonucleotide probes (70-bp) designed to represent the diversity of ammonia monooxygenase (amoA) genes from Chesapeake Bay clone libraries and cultiva...

متن کامل

Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. T...

متن کامل

Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon Cascade Mountains.

Although nitrification has been well studied in coniferous forests of Western North America, communities of NH(3)-oxidizing bacteria in these forests have not been characterized. Studies were conducted along meadow-to-forest transects at two sites (Lookout and Carpenter) in the H. J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon. Soil samples taken at 10- or 20-m inter...

متن کامل

Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcriptio...

متن کامل

Freshwater Ammonia-Oxidizing Archaea Retain amoA mRNA and 16S rRNA during Ammonia Starvation

In their natural habitats, microorganisms are often exposed to periods of starvation if their substrates for energy generation or other nutrients are limiting. Many microorganisms have developed strategies to adapt to fluctuating nutrients and long-term starvation. In the environment, ammonia oxidizers have to compete with many different organisms for ammonium and are often exposed to long peri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 3  شماره 

صفحات  -

تاریخ انتشار 2005