Exposing multi-relational networks to single-relational network analysis algorithms
نویسندگان
چکیده
Many, if not most network analysis algorithms have been designed specifically for single-relational networks; that is, networks in which all edges are of the same type. For example, edges may either represent “friendship,” “kinship,” or “collaboration,” but not all of them together. In contrast, a multi-relational network is a network with a heterogeneous set of edge labels which can represent relationships of various types in a single data structure. While multi-relational networks are more expressive in terms of the variety of relationships they can capture, there is a need for a general framework for transferring the many single-relational network analysis algorithms to the multi-relational domain. It is not sufficient to execute a single-relational network analysis algorithm on a multi-relational network by simply ignoring edge labels. This article presents an algebra for mapping multi-relational networks to single-relational networks, thereby exposing them to single-relational network analysis algorithms.
منابع مشابه
Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis
In this paper, wire electrical discharge machining of D3 tool steel is studied. Influence of pulse-on time, pulse-off time, peak current and wire speed are investigated for MRR, dimensional deviation, gap current and machining time, during intricate machining of D3 tool steel. Taguchi method is used for single characteristics optimization and to optimize all four process parameters simultaneous...
متن کاملUsing Gray Relational Analysis and Taguchi Technique in Solving Multi-objective Problems for Turning Operation of Austenitic Stainless Steel
In this study, the application of gray relational analysis (GRA) and Taguchi method in multi-criteria process parameters selection of turning operation has been investigated. The process responses under study are material removal rate (MRR) and surface roughness (SR); in turn, the input parameters include cutting speed, feed rate, depth of cut and nose radius of the cutting tool. The proposed a...
متن کاملCommunity Detection in Multi-relational Social Networks
Multi-relational networks are ubiquitous in many fields such as bibliography, twitter, and healthcare. There have been many studies in the literature targeting at discovering communities from social networks. However, most of them have focused on single-relational networks. A hint of methods detected communities from multi-relational networks by converting them to single-relational networks fir...
متن کاملAnalyzing Correlation between Internationalization Orientation and Social Network
The research on social networks and collaborative strategies has highlighted from the mid of 1980 which has contributed to the success and development of firms. The relationship and communication with trade partners in overseas help success of firms in entering to foreign markets and improve new partners and new markets abroad. Doing firm internationalization in foreign countries faces some ba...
متن کاملFLIP: Active Learning for Relational Network Classification
Active learning in relational networks has gained popularity in recent years, especially for scenarios when the costs of obtaining training samples are very high. We investigate the problem of active learning for both singleand multi-labeled relational network classification in the absence of node features during training. The problem becomes harder when the number of labeled nodes available fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Informetrics
دوره 4 شماره
صفحات -
تاریخ انتشار 2010