Geometric level raising for p-adic automorphic forms
نویسنده
چکیده
We present a level raising result for families of p-adic automorphic forms for a definite quaternion algebra D over Q. The main theorem is an analogue of a theorem for classical automorphic forms due to Diamond and Taylor. One of the ingredients in the proof of Diamond and Taylor’s theorem (which also played a role in earlier work of Taylor) is the definition of a suitable pairing on the space of automorphic forms. In our situation one cannot define such a pairing on the infinite dimensional space of p-adic automorphic forms, so instead we introduce a space defined with respect to a dual coefficient system and work with a pairing between the usual forms and the dual space. A key ingredient is an analogue of Ihara’s lemma which shows an interesting asymmetry between the usual and the dual spaces. Our research grew out of a conjecture of Paulin, predicting a level raising phenomenon on the GL2eigencurve. Our results prove certain cases of this conjecture, by way of the p-adic Jacquet-Langlands map constructed by Chenevier. A further application is a description of an eigenvariety of automorphic forms for D that are new at a prime l.
منابع مشابه
Elliptic Curves , Modular Forms and Related
Nick Andersen (University of California, Los Angeles) Kloosterman sums and Maass cusp forms of half-integral weight ABSTRACT: Kloosterman sums play an important role in modern analytic number theory. I will give a brief survey of what is known about the classical Kloosterman sums and their connection to Maass cusp forms of weight 0. I will then talk about recent progress toward bounding sums of...
متن کاملExplicit Calculations of Automorphic Forms for Definite Unitary Groups
I give an algorithm for computing the full space of automorphic forms for definite unitary groups over Q, and apply this to calculate the automorphic forms of level G(Ẑ) and various small weights for an example of a rank 3 unitary group. This leads to some examples of various types of endoscopic lifting from automorphic forms for U1 × U1 × U1 and U1 × U2, and to an example of a non-endoscopic f...
متن کاملAUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES
We introduce the notion of automorphic symbol generalizing the classical modular symbol and use it to attach very general p-adic L-functions to nearly ordinary Hilbert automorphic forms. Then we establish an exact control theorem for the p-adically completed cohomology of a Hilbert modular variety localized at a suitable nearly ordinary maximal ideal of the Hecke algebra. We also show its freen...
متن کاملSome bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملGeometric Realization of Whittaker Functions and the Langlands Conjecture
1.1. Let X be a smooth, complete, geometrically connected curve over Fq. Denote by F the field of rational functions on X , by A the ring of adeles of F , and by Gal(F/F ) the Galois group of F . The present paper may be considered as a step towards understanding the geometric Langlands correspondence between n–dimensional `–adic representations of Gal(F/F ) and automorphic forms on the group G...
متن کامل