Weak k-majorization and polyhedra

نویسندگان

  • Geir Dahl
  • François Margot
چکیده

For integers k and n with k ≤ n a vector x ∈ R is said to be weakly k-majorized by a vector q ∈ R if the sum of the r largest components of x does not exceed the sum of the r largest components of q, for r = 1, . . . , k. For a given q the set of vectors weakly k-majorized by q defines a polyhedron P (q; k). We determine the vertices of both P (q; k) and its integer hull Q(q; k). Furthermore a complete and nonredundant linear description of Q(q; k) is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Majorization, Polyhedra and Statistical Testing Problems. Majorization, Polyhedra and Statistical Testing Problems

There are important connections between majorization and convex polyhedra. Both weak majorization and majorization are preorders related to certain simple convex cones. We investigate the facial structure of a polyhedral cone C associated with a layered directed graph. A generalization of weak majorization based on C is introduced. It de nes a preorder of matrices. An application in statistical...

متن کامل

Polyhedra and Optimization in Connection with a Weak Majorization Ordering

We introduce the concept of weak k-majorization extending the classical notion of weak sub-majorization. For integers k and n with k n a vector x 2 R is weakly k-majorized by a vector q 2 R if the sum of the r largest components of x does not exceed the sum of the r largest components of q, for r = 1; : : : ; k. For a given q the set of vectors weakly k-majorized by q de nes a polyhedron P (q;k...

متن کامل

Polyhedra and Optimization Related to a Weak Absolute Majorization Ordering

A vector x E Rn is weakly k-majorized by a vector q 6 R^ if the sum of r largest components of x is less than or equal to the sum of r largest components of q for r = 1,2,. . . , k and k < n. In this paper we extend the components of x to their absolute values in the above description and generalize some results in [2] and [3] by G. Dahl and F. Margot.

متن کامل

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 1998