Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques
نویسندگان
چکیده
Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this paper, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast-time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.
منابع مشابه
Taxi-Out Time Prediction for Departures at Charlotte Airport Using Machine Learning Techniques
Predicting the taxi-out times of departures accurately is important for improving airport efficiency and takeoff time predictability. In this paper, we attempt to apply machine learning techniques to actual traffic data at Charlotte Douglas International Airport for taxi-out time prediction. To find the key factors affecting aircraft taxi times, surface surveillance data is first analyzed. From...
متن کاملTaxi-out Prediction using Approximate Dynamic Programming
High taxi-out times (time between gate push-back and wheels off) at major airports is a primary cause for flight delays in the National Airspace System (NAS). These delays have a cascading effect and affect the performance of Air Traffic Control (ATC) System. Accurate prediction of taxi-out time is needed to make downstream schedule adjustments and better departure planning, which mitigates del...
متن کاملApplication of Reinforcement Learning Algorithms for Predicting Taxi-out Times
Accurate estimation of taxi-out time in the presence of uncertainties in the National Airspace System (NAS) is essential for the development of a more efficient air traffic management system. The dynamic nature of operations in the NAS indicates that traditional regression methods characterized by constant parameters would be inadequate to capture variations in taxi-out time across a day. In th...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملA combined statistical approach and ground movement model for improving taxi time estimations at airports
With the expected continued increases in air transportation, the mitigation of the consequent delays and environmental effects is becoming more and more important, requiring increasingly sophisticated approaches for airside airport operations. Improved on-stand time predictions (for improved resource allocation at the stands) and take-off time predictions (for improved airport-airspace coordina...
متن کامل