Integration of light and circadian signals that regulate chloroplast transcription by a nuclear‐encoded sigma factor

نویسندگان

  • Fiona E. Belbin
  • Zeenat B. Noordally
  • Sarah J. Wetherill
  • Kelly A. Atkins
  • Keara A. Franklin
  • Antony N. Dodd
چکیده

We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis

Light perception by photoreceptors impacts plastid transcription, development, and differentiation. This photoreceptor-dependent activity suggests a mechanism for photoregulation of gene expression in the nucleus and plastid that serves to coordinate expression of critical genes of these two organelles. This coordinate expression is required for proper stoichiometric accumulation of components ...

متن کامل

SIG1, a Sigma Factor for the Chloroplast RNA Polymerase, Differently Associates with Multiple DNA Regions in the Chloroplast Chromosomes in Vivo

Chloroplasts have their own DNA and gene expression systems. Transcription in chloroplasts is regulated by two types of RNA polymerase, nuclear-encoded plastid RNA polymerase (NEP) and plastid-encoded plastid RNA polymerase (PEP), and multiple sigma factors for PEP. To study transcriptional regulation in chloroplasts, a molecular genetic approach has extensively been used. However, this method ...

متن کامل

P-231: Androgen Receptor Gene Expression in Azoospermia Men

Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...

متن کامل

Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba).

Plant chloroplasts contain transcription factors that functionally resemble bacterial sigma factors. We have cloned the full-length cDNA from mustard (Sinapis alba) for a 53 kDa derived polypeptide that contains similarity to regions 1.2-4.2 of sigma70-type factors. The amino acid sequence at the N-terminus has characteristics of a chloroplast transit peptide. An in vitro synthesized polypeptid...

متن کامل

Differential expression on a daily basis of plastid sigma factor genes from the moss Physcomitrella patens. Regulatory interactions among PpSig5, the circadian clock, and blue light signaling mediated by cryptochromes.

The nuclear-encoded plastid sigma factors are supposed to be a regulatory subunit of the multisubunit bacteria-type plastid RNA polymerase. We studied here whether or not three genes, PpSig1, PpSig2, and PpSig5 encoding plastid sigma factors, are controlled by the circadian clock and/or by blue light signaling in the moss Physcomitrella patens. Among the three PpSig genes, only PpSig5 was clear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 213  شماره 

صفحات  -

تاریخ انتشار 2017