Building comprehensible customer churn prediction models with advanced rule induction techniques
نویسندگان
چکیده
Customer churn prediction models aim to detect customers with a high propensity to attrite. Predictive accuracy, comprehensibility, and justifiability are three key aspects of a churn prediction model. An accurate model permits to correctly target future churners in a retention marketing campaign, while a comprehensible and intuitive rule-set allows to identify the main drivers for customers to churn, and to develop an effective retention strategy in accordance with domain knowledge. This paper provides an extended overview of the literature on the use of data mining in customer churn prediction modeling. It is shown that only limited attention has been paid to the comprehensibility and the intuitiveness of churn prediction models. Therefore, two novel data mining techniques are applied to churn prediction modeling, and benchmarked to traditional rule induction techniques such as C4.5 and RIPPER. Both AntMiner+ and ALBA are shown to induce accurate as well as comprehensible classification rule-sets. AntMiner+ is a high performing data mining technique based on the principles of Ant Colony Optimization that allows to include domain knowledge by imposing monotonicity constraints on the final rule-set. ALBA on the other hand combines the high predictive accuracy of a non-linear support vector machine model with the comprehensibility of the rule-set format. The results of the benchmarking experiments show that ALBA improves learning of classification techniques, resulting in comprehensible models with increased performance. AntMiner+ results in accurate, comprehensible, but most importantly justifiable models, unlike the other modeling techniques included in this study. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
A Novel Genetic Algorithm Based Method for Building Accurate and Comprehensible Churn Prediction Models
Customer churn has become a critical problem for all companies in particular for those that are operating in service-based industries such as telecommunication industry. Data mining techniques have been used for constructing churn prediction models. Past research in churn prediction context have mainly focused on the accuracy aspect of the constructed churn models. However, in addition to the a...
متن کاملA Neuro-Fuzzy Classifier for Customer Churn Prediction
Churn prediction is a useful tool to predict customer at churn risk. By accurate prediction of churners and non-churners, a company can use the limited marketing resource efficiently to target the churner customers in a retention marketing campaign. Accuracy is not the only important aspect in evaluating a churn prediction models. Churn prediction models should be both accurate and comprehensib...
متن کاملDetermination of Algorithms Making Balance Between Accuracy and Comprehensibility in Churn Prediction Setting
Predictive modeling is a useful tool for identifying customers who are at risk of churn. An appropriate churn prediction model should be both accurate and comprehensible. However, reviewing the past researches in this context shows that much attention is paid to accuracy of churn prediction models than comprehensibility of them. This paper compares three different rule induction techniques from...
متن کاملHierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملTime-sensitive Customer Churn Prediction based on PU Learning
With the fast development of Internet companies throughout the world, customer churn has become a serious concern. To better help the companies retain their customers, it is important to build a customer churn prediction model to identify the customers who are most likely to churn ahead of time. In this paper, we propose a Timesensitive Customer Churn Prediction (TCCP) framework based on Positi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011