Electrical modulation of weak-antilocalization and spin–orbit interaction in dual gated Ge/Si core/shell nanowires

نویسندگان

  • R Wang
  • R S Deacon
  • J Yao
  • C M Lieber
  • K Ishibashi
چکیده

Magnetic transport of holes in Ge/Si core/shell nanowires (NWs) is investigated under the control of dual electrical gating. The strength of the spin–orbit interaction (SOI) is analyzed from the weak-antilocalization (WAL) of the magnetoconductance (MC) as a function of a perpendicular magnetic field. By superimposing a small alternating signal on the voltage offset of both gates the universal conductance fluctuations are largely removed from the averaged MC traces, enabling a good fitting to WAL theory models. The tuning of both spin lifetime and the SOI strength is observed in the NWs with dual gating while the carrier density is kept constant. We observe an enhancement of spin lifetime with the mean free path due to the effect of geometrical confinement. The measured SOI energy of 1–6 meV may arise from the dipole coupled Rashba SOI, which is predicted to be one order of magnitude larger than the conventional Rashba coefficient in the Ge/Si core/shell NW system. A clear electrostatic modulation of SOI strength by a factor of up to three implies that Ge/Si NWs are a promising platform for the study of helical states, Majorana fermions and spin–orbit qubits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells.

Appropriately controlling the properties of the Si shell in Ge/Si core/shell nanowires permits not only passivation of the Ge surface states, but also introduces new interface phenomena, thereby enabling novel nanoelectronics concepts. Here, we report a rational synthesis of Ge/Si core/shell nanowires with doped Si shells. We demonstrate that the morphology and thickness of Si shells can be con...

متن کامل

Spin Polarized Transport in Core Shell Nanowire of Silicon and Germanium

We investigate spin polarized electron transport in ultra-thin Si-Core/Ge-Shell and GeCore/Si-Shell nanowire system using semi-classical Monte Carlo simulation method. Depolarization of electron’s spin occurs in nanowire mainly due to D’yakonov-Perel dephasing (DP-mechanism) and Elliott-Yafet dephasing (EY-mechanism). We studied the dependence of spin dephasing on ultra-thin silicon core diamet...

متن کامل

Radial modulation doping in core-shell nanowires.

Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions and field-effect transistors and provide a unique test bed for low-dimensional physical phenomena. The ability to fabricate nanowire heterostructures with atomically flat, defect-free interfaces enables energy band engineering in both axial and radial directions. The design o...

متن کامل

Defects responsible for the hole gas in Ge/Si core-shell nanowires.

The origin of the ballistic hole gas recently observed in Ge/Si core-shell nanowires has not been clearly resolved yet, although it is thought to be the result of the band offset at the radial interface. Here we perform spin-polarized density-functional calculations to investigate the defect levels of surface dangling bonds and Au impurities in the Si shell. Without any doping strategy, we find...

متن کامل

Hole spin relaxation in Ge-Si core-shell nanowire qubits.

Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017