Thermo-mechanical behaviour of energy piles

نویسنده

  • B. L. AMATYA
چکیده

Energy piles are an effective and economic means of using geothermal energy resources for heating and cooling buildings, contributing to legislative requirements for renewable energy in new construction. While such piles have been used for around 25 years with no apparent detrimental effect, there is limited understanding of their thermo-mechanical behaviour. This paper synthesises the results from three published field studies and illustrates some of the engineering behaviour of such piles during heating and cooling. Simplified load transfer mechanisms for a single pile subjected to pure thermal loadings (i.e. without mechanical load) and combined thermomechanical loadings have been developed and are used to interpret the field data with regard to change in axial stress and shaft friction during heating and cooling. The effect of end restraint and ground conditions on the thermo-mechanical response of energy piles is discussed. Values of change in axial stress and mobilised shaft friction due to thermal effects that may be useful in the design of energy piles are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Behaviour of Concrete Energy Piles in Thermal Loadings

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based o...

متن کامل

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

Closed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder

Electro-magneto-thermo-elastic response of a thick double-layered cylinder made from a homogeneous interlayer and a functionally graded piezoelectric material (FGPM) outer layer is investigated. Material properties of the FGPM layer vary along radius based on the power law distribution. The vessel is subjected to an internal pressure, an induced electric potential, a uniform magnetic field and ...

متن کامل

Buckling of Piezoelectric Composite Cylindrical Shell Under Electro-thermo-mechanical Loading

Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-ba...

متن کامل

THERMO-MECHANICAL DESIGN OPTIMIZATION OF CORDIERITE–MULLITE BASED KILN FURNITURE

Abstract: Cordierite-Mullite based kiln furnitures are widely used in fast-firing of ceramic products because of their low thermal expansion which confer them a very good ability to thermal shock resistance. Difference in CTE of constituent phase can develop damage during thermal cycling due to internal stresses. Increase in industrial competitiveness leads to the development of new means for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012