Odorants differentially enhance phosphoinositide turnover and adenylyl cyclase in olfactory receptor neuronal cultures.
نویسندگان
چکیده
Both the cAMP and the phosphoinositide (PI) second messenger systems have been implicated in olfactory signal transduction. We have developed a primary culture system of mammalian olfactory receptor neurons (ORNs; Ronnett et al., 1991a) to permit analysis of odorant-induced second messenger system activation in the intact ORN. The ability of a series of odorants to stimulate PI turnover and adenylyl cyclase was examined. All odorants stimulated both second messenger systems, although with differential potencies. Stimulation of PI turnover desensitized upon reexposure of cultures to odorant. The enhancement by single odorants of both adenylyl cyclase and PI turnover, but to varying degrees, affords a mechanism for increased specificity in olfactory signal transduction.
منابع مشابه
Odorant-sensitive adenylate cyclase: rapid, potent activation and desensitization in primary olfactory neuronal cultures.
Using primary olfactory neuronal cultures, we have demonstrated rapid, potent increases in cAMP levels and adenylate cyclase [AC; ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity in response to odorants. Isobutyl-methoxypyrazine is active at 1 nM. Odorant enhancement is dependent on Ca2+ concentration with maximal effects at 10-100 microM. Biphasic temporal and concentration-related ef...
متن کاملPhosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons
Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signa...
متن کاملAdenylyl cyclase-dependent axonal targeting in the olfactory system.
The vertebrate olfactory bulb is a remarkably organized neuronal structure, in which hundreds of functionally different sensory inputs are organized into a highly stereotyped topographical map. How this wiring is achieved is not yet understood. Here, we show that the olfactory bulb topographical map is modified in adenylyl cyclase 3 (adenylate cyclase 3)-deficient mice. In these mutants, axonal...
متن کاملIsolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons.
Two major challenges exist in our understanding of the olfactory system. One concerns the enormous combinatorial code underlying odorant discrimination by odorant receptors. The other relates to neurogenesis and neuronal development in the olfactory epithelium. To address these issues, continuous cell cultures containing olfactory receptor neurons (ORNs) were obtained from olfactory epithelia o...
متن کاملPituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro.
We investigated the role of amidated neuropeptides, and specifically pituitary adenylyl cyclase-activating polypeptide (PACAP), in olfactory neurogenesis and olfactory receptor neuronal survival. Using both immunohistochemistry and in situ hybridization, we find that both peptidylglycine alpha-amidating monooxygenase (PAM), the enzyme responsible for amidation and therefore activation of all am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 4 شماره
صفحات -
تاریخ انتشار 1993