Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy.

نویسندگان

  • Haibao Tang
  • Margaret R Woodhouse
  • Feng Cheng
  • James C Schnable
  • Brent S Pedersen
  • Gavin Conant
  • Xiaowu Wang
  • Michael Freeling
  • J Chris Pires
چکیده

The genome sequence of the paleohexaploid Brassica rapa shows that fractionation is biased among the three subgenomes and that the least fractionated subgenome has approximately twice as many orthologs as its close (and relatively unduplicated) relative Arabidopsis than had either of the other two subgenomes. One evolutionary scenario is that the two subgenomes with heavy gene losses (I and II) were in the same nucleus for a longer period of time than the third subgenome (III) with the fewest gene losses. This "two-step" hypothesis is essentially the same as that proposed previously for the eudicot paleohexaploidy; however, the more recent nature of the B. rapa paleohexaploidy makes this model more testable. We found that subgenome II suffered recent small deletions within exons more frequently than subgenome I, as would be expected if the genes in subgenome I had already been near maximally fractionated before subgenome III was introduced. We observed that some sequences, before these deletions, were flanked by short direct repeats, a unique signature of intrachromosomal illegitimate recombination. We also found, through simulations, that short--single or two-gene--deletions appear to dominate the fractionation patterns in B. rapa. We conclude that the observed patterns of the triplicated regions in the Brassica genome are best explained by a two-step fractionation model. The triplication and subsequent mode of fractionation could influence the potential to generate morphological diversity--a hallmark of the Brassica genus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unleashing the Genome of Brassica Rapa

The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had di...

متن کامل

The Fate of Arabidopsis thaliana Homeologous CNSs and Their Motifs in the Paleohexaploid Brassica rapa

Following polyploidy, duplicate genes are often deleted, and if they are not, then duplicate regulatory regions are sometimes lost. By what mechanism is this loss and what is the chance that such a loss removes function? To explore these questions, we followed individual Arabidopsis thaliana-A. thaliana conserved noncoding sequences (CNSs) into the Brassica ancestor, through a paleohexaploidy a...

متن کامل

Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa

Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 w...

متن کامل

Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats

Objectives: Turnip leaf has been used in folk medicine of Iran for the treatment of diabetes. However,so far no scientific study has been done to support its use in traditional medicine. The present study was carried out to evaluate the possible hypoglycemic efficacy of aqueous extract of turnip leaf (AETL) in diabetic rats. Materials and Methods: Alloxan-induced diabetic rats were orally treat...

متن کامل

A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U's triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus, Brassica juncea, and Brassica carinata) that arose through interspecific hybridizations. Despite be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 190 4  شماره 

صفحات  -

تاریخ انتشار 2012