Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions
نویسندگان
چکیده
Previous methods proposed for the detection of cancer driver mutations have been based on the estimation of background mutation rate, impact on protein function, or network influence. In this paper, we instead focus on those factors influencing patient survival. To this end, an approximation of the log-rank test has been systematically applied, even though it assumes a large and similar number of patients in both risk groups, which is violated in cancer genomics. Here, we propose VALORATE, a novel algorithm for the estimation of the null distribution for the log-rank, independent of the number of mutations. VALORATE is based on conditional distributions of the co-occurrences between events and mutations. The results, achieved through simulations, comparisons with other methods, analyses of TCGA and ICGC cancer datasets, and validations, suggest that VALORATE is accurate, fast, and can identify both known and novel gene mutations. Our proposal and results may have important implications in cancer biology, bioinformatics analyses, and ultimately precision medicine.
منابع مشابه
A Review of Driver Genetic Alterations in Thyroid Cancers
Thyroid cancer is a frequent endocrine related malignancy with continuous increasing incidence. There has been moving development in understanding its molecular pathogenesis recently mainly through the explanation of the original role of several key signaling pathways and related molecular distributors. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, su...
متن کاملComputational approaches for the identification of cancer genes and pathways
High-throughput DNA sequencing techniques enable large-scale measurement of somatic mutations in tumors. Cancer genomics research aims at identifying all cancer-related genes and solid interpretation of their contribution to cancer initiation and development. However, this venture is characterized by various challenges, such as the high number of neutral passenger mutations and the complexity o...
متن کاملBeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions
The analysis of the mutational landscape of cancer, including mutual exclusivity and co-occurrence of mutations, has been instrumental in studying the disease. We hypothesized that exploring the interplay between co-occurrence, mutual exclusivity, and functional interactions between genes will further improve our understanding of the disease and help to uncover new relations between cancer driv...
متن کاملIdentification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملInvestigation of Game Between Cells in Occurrence of Genetic Mutations Using Evolutionary Game Theory
In this paper, two games that play a role in creating a cancer tumor and suppression are studied using evolutionary game theory and its different modes are analyzed. The first game is the competition between a cancer cell and a healthy cell to receive food through the blood. In the second game, the interaction between the two oncogenes Ras and Myc is examined for cellular deformation
متن کامل