Explicit values of multi-dimensional Kloosterman sums for prime powers, II

نویسنده

  • S. Gurak
چکیده

For any integer m > 1 fix ζm = exp(2πi/m), and let Z ∗ m denote the group of reduced residues modulo m. Let q = pα, a power of a prime p. The hyper-Kloosterman sums of dimension n > 0 are defined for q by R(d, q) = ∑ x1,...,xn∈Z∗ q ζ x1+···+xn+d(x1···xn) q (d ∈ Zq), where x−1 denotes the multiplicative inverse of x modulo q. Salie evaluated R(d, q) in the classical setting n = 1 for even q, and for odd q = pα with α > 1. Later, Smith provided formulas that simplified the computation of R(d, q) in these cases for n > 1. Recently, Cochrane, Liu and Zheng computed upper bounds for R(d, q) in the general case n > 0, stopping short of their explicit evaluation. Here I complete the computation they initiated to obtain explicit values for the Kloosterman sums for α > 1, relying on basic properties of some simple specialized exponential sums. The treatment here is more elementary than the author’s previous determination of these Kloosterman sums using character theory and p-adic methods. At the least, it provides an alternative, independent evaluation of the Kloosterman sums.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes Associated with Special Linear Groups and Power Moments of Multi-dimensional Kloosterman Sums

In this paper, we construct the binary linear codes C(SL(n, q)) associated with finite special linear groups SL(n, q), with both n,q powers of two. Then, via Pless power moment identity and utilizing our previous result on the explicit expression of the Gauss sum for SL(n, q), we obtain a recursive formula for the power moments of multi-dimensional Kloosterman sums in terms of the frequencies o...

متن کامل

Codes Associated with O+(2n,2r) and Power Moments of Kloosterman Sums

In this paper, we construct three binary linear codes C(SO(2, q)), C(O(2, q)), C(SO(4, q)), respectively associated with the orthogonal groups SO(2, q), O(2, q), SO(4, q), with q powers of two. Then we obtain recursive formulas for the power moments of Kloosterman and 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless power moment identity...

متن کامل

Codes Associated with Orthogonal Groups and Power Moments of Kloosterman Sums

Abstract In this paper, we construct three binary linear codes C(SO−(2, q)), C(O−(2, q)), C(SO−(4, q)), respectively associated with the orthogonal groups SO−(2, q), O−(2, q), SO−(4, q), with q powers of two. Then we obtain recursive formulas for the power moments of Kloosterman and 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless power ...

متن کامل

Recursive formulas generating power moments of multi-dimensional Kloosterman sums and m-multiple power moments of Kloosterman sums

Abstract. In this paper, we construct two binary linear codes associated with multi-dimensional and m−multiple power Kloosterman sums (for any fixed m) over the finite field Fq. Here q is a power of two. The former codes are dual to a subcode of the binary hyper-Kloosterman code. Then we obtain two recursive formulas for the power moments of multi-dimensional Kloosterman sums and for the m-mult...

متن کامل

Infinite Families of Recursive Formulas Generating Power Moments of Kloosterman Sums: Symplectic Case

In this paper, we construct two infinite families of binary linear codes associated with double cosets with respect to certain maximal parabolic subgroup of the symplectic group Sp(2n, q). Here q is a power of two. Then we obtain an infinite family of recursive formulas for the power moments of Kloosterman sums and those of 2-dimensional Kloosterman sums in terms of the frequencies of weights i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008