Relaxed phylogenetics and the palaeoptera problem: resolving deep ancestral splits in the insect phylogeny.
نویسندگان
چکیده
The order in which the 3 groups of winged insects (the Pterygota) diverged from their common ancestor has important implications for understanding the origin of insect flight. But despite this importance, the split between the Odonata (dragonflies and damselflies), Ephemeroptera (mayflies), and Neoptera (the other winged orders) remains very much unresolved. Indeed, previous studies have obtained strong apparent support for each of the 3 possible branching patterns. Here, we present a systematic reinvestigation of the basal pterygote split. Our results suggest that outgroup choice and limited taxon sampling have been major sources of systematic error, even for data sets with a large number of characters (e.g., in phylogenomic data sets). In particular, a data set of 113 taxa provides consistent support for the Palaeoptera hypothesis (the grouping of Odonata with Ephemeroptera), whereas results from data sets with fewer taxa give inconsistent results and are highly sensitive to minor changes in data and methods. We also focus on recent methods that exploit temporal information using fossil calibrations, combined with additional assumptions about the evolutionary process, and so reduce the influence of outgroup choice. These methods are shown to provide more consistent results, for example, supporting Palaeoptera, even for data sets that previously supported other hypotheses. Together, these results have implications for understanding insect origins and for resolving other problematic splits in the tree of life.
منابع مشابه
Perspectives on Odonata
This thesis considers the phylogeny of Odonata from two different viewpoints. The first article, “The Palaeoptera Problem”, is an attempt at placing Odonata in the pterygote insect phylogenetic tree. The second, “A phylogenetic perspective on larval spine morphology in Leucorrhinia (Odonata, Libellulidae)”, is an in-depth view of the whiteface dragonflies, a monophyletic group that only contain...
متن کاملResolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships.
Resolving evolutionary relationships in groups that underwent fast radiation in deep time is a problem for molecular phylogeny, as the scant phylogenetic signal that characterises short internal branches is generally swamped by more recent substitutions. We implement an approach, that maps how the support for rival phylogenies changes when analysing subsets of sites with either faster and more ...
متن کاملNuclear genes resolve mesozoic-aged divergences in the insect order Lepidoptera.
Compared to the number of genes available for study of both younger and older divergences, few genes have yet been identified that can strongly resolve phylogenetic splits of Mesozoic age ( approximately 65-250 mya). Thus, reconstruction of Mesozoic-age phylogenies, exemplified by basal divergences within the major orders of holometabolous insects, is likely to be especially dependent on combin...
متن کاملResolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae.
A backbone phylogeny that fully resolves all subfamily and deeper nodes of Asteraceae was constructed using 14 chloroplast DNA loci. The recently named genus Famatinanthus was found to be sister to the Mutisioideae-Asteroideae clade that represents more than 99% of Asteraceae and was found to have the two chloroplast inversions present in all Asteraceae except the nine genera of Barnadesioideae...
متن کاملA phylogeny of the only ground-dwelling radiation of Cyrtodactylus (Squamata, Gekkonidae): diversification of Geckoella across peninsular India and Sri Lanka.
The subgenus Geckoella, the only ground-dwelling radiation within Cyrtodactylus, closely overlaps in distribution with brookii group Hemidactylus in peninsular India and Sri Lanka. Both groups have Oligocene origins, the latter with over thrice as many described species. The striking difference in species richness led us to believe that Geckoella diversity is underestimated, and we sampled for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 62 2 شماره
صفحات -
تاریخ انتشار 2013