On some properties of solutions of the biharmonic equation

نویسندگان

  • Zayid Abdulhadi
  • Y. Abu Muhanna
  • S. Khuri
چکیده

A 2p-times continuously differentiable complex-valued function f = u+ iv in a simply connected domainΩ ⊆ C is p-harmonic if f satisfies the p-harmonic equation ∆p f = 0. In this paper, we investigate the properties of p-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness and the region of variability of some classes of p-harmonic mappings. Then we prove the existence of Landau constant for the class of functions of the form Df = z fz − z fz, where f is p-harmonic in |z| < 1. Also, we discuss the region of variability for certain p-harmonic mappings. At the end, as a consequence of the earlier results of the authors, we present explicit upper estimates for Bloch norm for biand tri-harmonic mappings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic

The aim of this article is to establish the existence of at least three‎ ‎solutions for a perturbed $p$-biharmonic equation depending on two‎ ‎real parameters‎. ‎The approach is based on variational methods‎.

متن کامل

Infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{R}^N$

‎Using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{R}^N$‎. ‎The existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $V(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

Multiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions

In this paper‎, ‎we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity‎. ‎Using some variational arguments and exploiting the symmetries of the problem‎, ‎we establish a multiplicity result giving two nontrivial solutions‎.

متن کامل

Regularity of the obstacle problem for the parabolic biharmonic equation

We study the regularity of solutions to the obstacle problem for the parabolic biharmonic equation. We analyze the problem via an implicit time discretization, and we prove some regularity properties of the solution.

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2006