Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance.
نویسندگان
چکیده
Histone modification in chromatin is one of the key control points in gene regulation in eukaryotic cells. Protein complexes composed of histone acetyltransferase or deacetylase, WD40 repeat protein, and many other components have been implicated in this process. Here, we report the identification and functional characterization of HOS15, a WD40-repeat protein crucial for repression of genes associated with abiotic stress tolerance through histone deacetylation in Arabidopsis. HOS15 shares high sequence similarity with human transducin-beta like protein (TBL), a component of a repressor protein complex involved in histone deacetylation. Mutation of the HOS15 gene renders mutant plants hypersensitive to freezing temperatures. HOS15 is localized in the nucleus and specifically interacts with histone H4. The level of acetylated histone H4 is higher in the hos15 mutant than in WT plants. Moreover, the stress inducible RD29A promoter is hyperinduced and associated with a substantially higher level of acetylated histone H4 in the hos15 mutant under cold stress conditions. Our results suggest a critical role for gene activation/repression by histone acetylation/deacetylation in plant acclimation and tolerance to cold stress.
منابع مشابه
The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3.
In Arabidopsis thaliana, the promotion of flowering by cold temperatures, vernalization, is regulated via a floral-repressive MADS box transcription factor, FLOWERING LOCUS C (FLC). Vernalization leads to the epigenetic repression of FLC expression, a process that requires the polycomb group (PcG) protein VERNALIZATION 2 (VRN2) and the plant homeodomain protein VERNALIZATION INSENSITIVE 3 (VIN3...
متن کاملThe PHD Finger Protein VRN5 Functions in the Epigenetic Silencing of Arabidopsis FLC
Vernalization, the acceleration of flowering by the prolonged cold of winter, ensures that plants flower in favorable spring conditions. During vernalization in Arabidopsis, cold temperatures repress FLOWERING LOCUS C (FLC) expression in a mechanism involving VERNALIZATION INSENSITIVE 3 (VIN3), and this repression is epigenetically maintained by a Polycomb-like chromatin regulation involving VE...
متن کاملInvolvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response
Histone modifications play an important role in the epigenetic regulation of gene expression. All histone modifications are reversible, which may therefore provide a flexible way for regulating gene expression during the plant's development and during the plant response to environmental stimuli. The reversible acetylation and deacetylation of specific lysine residues on core histones are cataly...
متن کاملLHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC.
Vernalization is the acceleration of flowering by prolonged cold that aligns the onset of reproductive development with spring conditions. A key step of vernalization in Arabidopsis is the epigenetic silencing of FLOWERING LOCUS C (FLC), which encodes a repressor of flowering. The vernalization-induced epigenetic silencing of FLC is associated with histone deacetylation and H3K27me2 and H3K9me2...
متن کاملRegulation of flowering time by histone acetylation in Arabidopsis.
The Arabidopsis autonomous floral-promotion pathway promotes flowering independently of the photoperiod and vernalization pathways by repressing FLOWERING LOCUS C (FLC), a MADS-box transcription factor that blocks the transition from vegetative to reproductive development. Here, we report that FLOWERING LOCUS D (FLD), one of six genes in the autonomous pathway, encodes a plant homolog of a prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 12 شماره
صفحات -
تاریخ انتشار 2008