The penalty interior-point method fails to converge

نویسنده

  • Sven Leyffer
چکیده

Equilibrium equations in the form of complementarity conditions often appear as constraints in optimization problems. Problems of this type are commonly referred to as mathematical programs with complementarity constraints (MPCCs). A popular method for solving MPCCs is the penalty interior-point algorithm (PIPA). This paper presents a small example for which PIPA converges to a nonstationary point, providing a counterexample to the established theory. The reasons for this adverse behavior are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corc Technical Report Tr-2004-08 Interior-point `2-penalty Methods for Nonlinear Programming with Strong Global Convergence Properties

We propose two line search primal-dual interior-point methods that approximately solve a sequence of equality constrained barrier subproblems. To solve each subproblem, our methods apply a modified Newton method and use an `2-exact penalty function to attain feasibility. Our methods have strong global convergence properties under standard assumptions. Specifically, if the penalty parameter rema...

متن کامل

An interior-point piecewise linear penalty method for nonlinear programming

We present an interior-point penalty method for nonlinear programming (NLP), where the merit function consists of a piecewise linear penalty function (PLPF) and an `2-penalty function. The PLPF is defined by a set of penalty parameters that correspond to break points of the PLPF and are updated at every iteration. The `2-penalty function, like traditional penalty functions for NLP, is defined b...

متن کامل

Convergence Analysis of an Interior-point Method for Nonconvex Nonlinear Programming

In this paper, we present global and local convergence results for an interior-point method for nonlinear programming. The algorithm uses an `1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’s strictly feasible interior-point method [6]. The global conver...

متن کامل

An Interior Penalty Method with C Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity

The present paper proposes and analyzes an interior penalty technique using C0-finite elements to solve the Maxwell equations in domains with heterogeneous properties. The convergence analysis for the boundary value problem and the eigenvalue problem is done assuming only minimal regularity in Lipschitz domains. The method is shown to converge for any polynomial degrees and to be spectrally cor...

متن کامل

Interior-point Methods for Nonconvex Nonlinear Programming: Convergence Analysis and Computational Performance

In this paper, we present global and local convergence results for an interior-point method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an `1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2005