Head model and electrical source imaging: A study of 38 epileptic patients☆

نویسندگان

  • Gwénael Birot
  • Laurent Spinelli
  • Serge Vulliémoz
  • Pierre Mégevand
  • Denis Brunet
  • Margitta Seeck
  • Christoph M. Michel
چکیده

Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence of the selected head model on the localization precision of IED in a large number of patients with known focus localization has not yet been performed. We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints (LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from the individual MRI of the patient and ESI was performed on averaged IED. We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Computational Modeling of Simultaneously Recorded Scalp and Depth Eeg Signals: Insights into the Interpretation of Interictal Epileptic Activity

In epileptic patients candidate to surgery, the interpretation of electrophysiological signals recorded non-invasively (scalp EEG) and invasively (depth EEG) is a difficult but central question. Indeed, the localization of the epileptogenic zone, the determination of its organization and the definition of subsequent therapeutic strategy are still largely based on the analysis of electrophysiolo...

متن کامل

Interpretation of MEG spike source localization in frontal lobe epilepsy with multiple independent spike foci

Magnetic source imaging using a whole-head MEG system provides a more accurate localization of epileptic focus than other routinely used noninvasive methods such as scalp video EEG and magnetic resonance imaging (MRI) [1-3]. However, MEG source localization, as estimated by the single dipole and spherical model, may not fully describe an epileptic region that includes extensive or multiple epil...

متن کامل

Determination of Optimal Parameters and Feasibility for Imaging of Epileptic Seizures by Electrical Impedance Tomography: A Modelling Study Using a Realistic Finite Element Model of the Head

One potentially powerful application of Electrical Impedance Tomography (EIT) lies in the detection of the source of epileptic seizures in the brain (Holder, 2005). Many patients with epilepsy can be treated with drugs, but surgical resection of the abnormal region which produces seizures may be the only option in severe cases (Engel, Jr., 1993; Rosenow and Luders, 2001). For these, EIT could b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014