ECG Feature Extraction for Stress Recognition in Automobile Drivers
نویسندگان
چکیده
Mental stress is one of the well-known major risk factors for many diseases such as Hypertension, Coronary Artery Disease, and Heart Attack. This research paper places the emphasis on ECG signal processing for recognition of stress. Feature extraction of ECG is done with the help of lab view and then those features which are affected are classified. Results shown that ST wave, QRS wave, T wave and isoelectric level of ECG gets affected.
منابع مشابه
Electrocardiogram Comparison of Stress Recognition in Automobile Drivers on MATLAB
ECG is accustomed for measuring the rate and periodicity of heart pulses, also the chamber’s placement and size, the existence of any injury to the heart, and the consequences of instruments or drugs wont to regulate the heart, example pacemaker. This paper demonstrates the comparison of ECG obtained from the person identification mechanism of automobile drivers beneath several physiological st...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملNeuro-ANFIS Architecture for ECG Rhythm-Type Recognition Using Different QRS Geometrical-based Features
The paper addresses a new QRS complex geometrical feature extraction technique as well as its application for electrocardiogram (ECG) supervised hybrid (fusion) beat-type classification. To this end, after detection and delineation of the major events of ECG signal via a robust algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images ...
متن کاملA Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...
متن کامل