Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
نویسندگان
چکیده
The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase.
منابع مشابه
Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress.
Chloroplast signaling involves mechanisms to relay information from chloroplasts to the nucleus, to change nuclear gene expression in response to environmental cues. Aside from reactive oxygen species (ROS) produced under stress conditions, changes in the reduction/oxidation state of photosynthetic electron transfer components or coupled compounds in the stroma and the accumulation of photosynt...
متن کاملTranslation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I.
Light controls the translation of several mRNAs in fully developed chloroplasts via at least two regulatory pathways. In the first, the light signal is transduced as a thiol-mediated signal that modulates translation in parallel to light intensity. The second light-controlled pathway, termed priming, is a prerequisite to the thiol-mediated regulatory pathway. Light regulation is rapid and requi...
متن کاملDiscrete Redox Signaling Pathways Regulate Photosynthetic Light-Harvesting and Chloroplast Gene Transcription
In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron car...
متن کاملRegulation of the Chloroplast Light Harvesting Antenna by Plastoquinone Redox: Modulation of Chlorophyll Metabolism and Thylakoid Complex Organization By
There is currently a great deal of interest in the possibility of modifying photosynthetic parameters to improve photosynthesis, specifically with the aim of increasing crop yields for food and biofuels. Photoinhibition, the reduction of photosynthetic electron transport in the face of excess irradiance, is thought to contribute significantly to loss of photosynthetic yield and is therefore an ...
متن کاملRedox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b(6)/f complex.
We investigated the role of the redox state of the photosynthetic and respiratory electron transport chains on the regulation of psbA expression in Synechocystis PCC 6803. Different means to modify the redox state of the electron carriers were used: (a) dark to oxidize the whole electron transport chain; (b) a shift from dark to light to induce its reduction; (c) the chemical interruption of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 22 شماره
صفحات -
تاریخ انتشار 1995