Modulation instability, Cherenkov radiation and FPU recurrence
نویسندگان
چکیده
We study, numerically, the influence of third-order dispersion (TOD) on modulation instability (MI) in optical fibers described by the extended nonlinear Schrödinger equation. We consider two MI scenarios. One starts with a continuous wave (CW) with a small amount of white noise, while the second one starts with CW with a small harmonic perturbation at the highest value of the growth rate. In each case, the MI spectra show an additional spectral feature that is caused by Cherenkov radiation. We give an analytic expression for its frequency. Taking a single frequency of modulation instead of a noisy CW leads to the Fermi-Pasta-Ulam (FPU) recurrence dynamics. In this case, the radiation spectral feature multiplies due to the four-wave mixing process. FPU recurrence dynamics is quite pronounced at small values of TOD, disappears at intermediate values and is restored again at high TOD when the Cherenkov frequency enters the modulation instability band. Our results may lead to a better understanding of the role of TOD in optical fibers.
منابع مشابه
Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a g...
متن کاملAnatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence.
By invoking Bogoliubov's spectrum, we show that for the nonlinear Schrödinger equation, the modulation instability (MI) of its n=1 Fourier mode on a finite background automatically triggers a further cascading instability, forcing all the higher modes to grow exponentially in locked step with the n=1 mode. This fundamental insight, the enslavement of all higher modes to the n=1 mode, explains t...
متن کاملElectron-beam instability in left-handed media.
We predict that two electron beams can develop an instability when passing through a slab of left-handed media (LHM). This instability, which is inherent only for LHM, originates from the backward Cherenkov radiation and results in a self-modulation of the beams and radiation of electromagnetic waves. These waves leave the sample via the rear surface of the slab (the beam injection plane) and f...
متن کاملCoherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide.
An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one mi...
متن کاملاستفاده از شتابگر الکترونی MeV 10 برای تولید تابش چرنکوف درناحیه پرتوایکس نرم
Cherenkov radiation is generated when relativistic charged particles move in a medium with refractive index larger than unity. Although, the refractive index is generally smaller than unity in X-ray region, in the vicinity of atomic absorption edges, the refractive index may exceed unity and Cherenkov radiation can be generated in soft X-ray region with a narrow band width. In this paper, the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012