Specification and Informational Issues in Credit Scoring
نویسندگان
چکیده
Lenders use rating and scoring models to rank credit applicants on their expected performance. The models and approaches are numerous. We explore the possibility that estimates generated by models developed with data drawn solely from extended loans are less valuable than they should be because of selectivity bias. We investigate the value of “reject inference” – methods that use a rejected applicant’s characteristics, rather than loan performance data, in scoring model development. In the course of making this investigation, we also discuss the advantages of using parametric as well as nonparametric modeling. These issues are discussed and illustrated in the context of a simple stylized model.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملThe "Credit Scoring Pandemic" and the European Vaccine: Making Sense of EU Data Protection Legislation
This article explores credit scoring systems as a tool used by the credit industry to evaluate consumers' credit applications and creditworthiness within the context of the EU. After an analysis of the technologies and techniques behind the scoring of individuals, it investigates the most relevant issues behind the reporting of consumer financial information, i.e. the prejudicial side of sharin...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملUsing the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)
In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geograph...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کامل